Using the tangent half angle substitution
$$I=\int^{\pi/2}_0 \log(1+p \cos(x))\, dx=2\int_0^1 \frac 1{1+t^2} \log\Big(1+p \,\frac{1-t^2}{1+t^2} \Big)$$ Write the logarithm as
$$\log \left(t-\frac{\sqrt{p+1}}{\sqrt{p-1}}\right)+\log
\left(t+\frac{\sqrt{p+1}}{\sqrt{p-1}}\right)+\log (1-p)-\log \left(1+t^2\right)$$ and eventually
$$\frac 1{1+t^2}=\frac i 2\left(\frac{1}{t+i}-\frac{1}{t-i}\right)$$ to face simple integrals.
Recombining, this leads to
$$I=2 C+\frac{1}{2} \pi \log \left(\frac{p}{2}\right)+i\,(A-B)$$ where
$$A=\text{Li}_2\left(\frac{(1+i) \sqrt{p-1}}{\sqrt{p-1}-i
\sqrt{p+1}}\right)+\text{Li}_2\left(\frac{(1+i) \sqrt{p-1}}{\sqrt{p-1}+i
\sqrt{p+1}}\right)$$
$$B=\text{Li}_2\left(\frac{(1+i) \sqrt{p-1}}{i
\sqrt{p-1}-\sqrt{p+1}}\right)+\text{Li}_2\left(\frac{(1+i) \sqrt{p-1}}{i
\sqrt{p-1}+\sqrt{p+1}}\right)$$
Expanded for large values of $p$, thies gives
$$I=\frac{1}{2} \pi \log \left(\frac{p}{2}\right)+\sum_{n=0}^\infty \frac {a_n}{p^{2n+1}}\tag 1$$ Using $L=\log(2p)$ , the first coefficients are
$$\large\left(
\begin{array}{cc}
n & a_n \\
0 & L+1 \\
1 & \frac{6 L-1}{36} \\
2 & \frac{60 L-23}{800} \\
3 & \frac{420 L-199}{9408} \\
4 & \frac{2520 L-1319}{82944} \\
5 & \frac{27720 L-15377}{1239040} \\
\end{array}
\right)$$ which is a good approximation. For example, for $p=2$, the above truncated series leads to
$$\frac{24948591219443}{50357757542400}+\frac{951195037 }{908328960}\log (2)=\color{red}{1.22128}53$$
Edit
May be interesting if to notice that, using
$$I(p)=\int^{\pi/2}_0 \log(1+p \cos(x))\, dx$$
$$I'(p)=\int^{\pi/2}_0 \frac{\cos (x)}{1+p \cos (x)}\,dx=\frac{\pi }{2 p}-\frac{2}{p \sqrt{p^2-1}}\tanh^{-1}\left(\sqrt{\frac{p-1}{p+1}}\right)$$
Expanding for large values of $p$
$$I'(p)=\frac{\pi }{2 p}-\sum_{n=1}^\infty \frac {b_n}{p^{2n}}\tag 2$$ the first coefficients being (still with $L=\log(2p)$)
$$\large\left(
\begin{array}{cc}
n & b_n \\
1 & L \\
2 & \frac{2 L-1}{4} \\
3 & \frac{12 L-7}{32} \\
4 & \frac{60 L-37}{192} \\
5 & \frac{840 L-533}{3072} \\
\end{array}
\right)$$
Integrating from $p=1$ to $p$, the results of $(1)$.