-1

Lemma 2

Let $g$ be a primitive root modulo $p$ such that

$$ g^{p-1} \not \equiv 1\left(\bmod p^2\right) $$

Then for every $\alpha \geq 2$ we have

$$ g^{\varphi\left(p^{\alpha-1}\right)} \not \equiv 1\left(\bmod p^\alpha\right) . $$

Proof of Lemma 2. We use induction on $\alpha$. For $\alpha=2$, relation (9) reduces to (8). Suppose then, that (9) holds for $\alpha$. By the Euler-Fermat theorem we have

$$ g^{\varphi\left(p^{\alpha-1}\right)} \equiv 1\left(\bmod p^{\alpha-1}\right) $$

so

$$ g^{\varphi\left(p^{\alpha-1}\right)}=1+k p^{\alpha-1} $$

where $p \nmid k$ because of (9). Raising both sides of this last relation to the $p$ th power we find

$$ g^{\varphi\left(p^\alpha\right)}=\left(1+k p^{\alpha-1}\right)^p=1+k p^\alpha+k^2 \frac{p(p-1)}{2} p^{2(\alpha-1)}+r p^{3(\alpha-1)} $$

Now $2 \alpha-1 \geq \alpha+1$ and $3 \alpha-3 \geq \alpha+1$ since $\alpha \geq 2$. Hence, the last equation gives us the congruence

$$ g^{\varphi\left(p^\alpha\right)} \equiv 1+k p^\alpha\left(\bmod p^{\alpha+1}\right) $$

where $p \nmid k$. In other words, $g^{\varphi\left(p^\alpha\right)} \not \equiv 1\left(\bmod p^{\alpha+1}\right)$ so (9) holds for $\alpha+1$ if it holds for $\alpha$. This completes the proof of Lemma 2 and also of Theorem 10.6. Lemma2OriginalPic

My question:

How can I deduce that $(g^{\phi(p^{\alpha -1})})^p=g^{\phi(p^\alpha)}$?

Bill Dubuque
  • 282,220
Luca Hao
  • 137

1 Answers1

0

By the formula $\varphi(p^k)=p^{k-1}(p-1)$, we have \begin{align*} \left( g^{\varphi(p^{\alpha-1})} \right)^p=g^{p\varphi(p^{\alpha-1})}=g^{p^{\alpha-1}(p-1)}=g^{\varphi(p^\alpha)}. \end{align*}