I am trying to evaluate $$I = \int_0^1 \frac{x \ln(1-x) \ln(x) \ln(1+x)}{1+x} \, dx$$
By expanding $\ln(1-x)$ and $\ln(1+x)$, I arrived at the double sum:
$$I = -\sum_{m=1}^\infty \sum_{n=1}^\infty \frac{(-1)^{m+1}}{m n} \int_0^1 \frac{x^{m+n+1} \ln(x)}{1+x} \, dx.$$
I could compute the inside integral, and thus obtained:
$$\sum_{m=1}^\infty \sum_{n=1}^\infty \frac{(-1)^{1+m}}{m} \frac{-1}{4n} \left(-\psi^{(1)}\left(\frac{2+m+n}{2}\right) + \psi^{(1)}\left(\frac{3+m+n}{2}\right)\right) $$
where $\psi$ denotes the polylogarithm.
Could not proceed from here. Any help is much appreciated.