The region condition is
RegionConvert[
Simplex[{{0, 0, 0}, {2, 0, 0}, {2, 2, 0}, {2, 0, 2}}],
"Implicit"]
ImplicitRegion[x >= y + z && y >= 0 && z >= 0 &&
x <= 2, {x, y, z}]
$$0\leq z\leq 2\land ((0\leq y<2-z\land y+z\leq x\leq 2)\lor (y=2-z\land x=2))$$
I don't think that it's possible to solve for the domain in $(r,\xi,\eta)$ by $$x\to r \ \xi \ \sqrt{1-\eta^2}, y \to r \sqrt{1-\xi^2} \ \sqrt{1-\eta^2}, z \to r \ \eta $$ with $\xi, \eta$ representing the sines of the angles in spherical coordinates.
The cartesian integrals are trivial, eg the center of gravity is
$$\frac{\int_0^2 \left(\int_0^x \left(\int_0^{x-y} \{x,y,z\} \, dz\right) \, dy\right) \, dx}{\int_0^2 \left(\int_0^x \left(\int_0^{x-y} 1 \, dz\right) \, dy\right) \, dx} = \left\{\frac{3}{2},\frac{1}{2},\frac{1}{2}\right\}$$
coinciding with Mathematica
Integrate[{x, y, z}, {x, y, z} \[Element]
Simplex[{{0, 0, 0}, {2, 0, 0}, {2, 2, 0}, {2, 0, 2}}]]/
Integrate[ 1, {x, y, z} \[Element]
Simplex[{{0, 0, 0}, {2, 0, 0}, {2, 2, 0}, {2, 0, 2}}]]
If you prefer spherical coordinates, choose $(2,2,0)$ as origin and the symmetry axis from $(2,2,0)$ to $(0,2,2)$ as the new z-polar axis with rotional symmetry by $\frac{2\pi}{3}$ for the former cartesian axes.