3

Is there a closed form expression for $$\sum_{n=2}^{\infty} (1 - \zeta(n)^{-1})$$

I know this sum converges, as

$$\color{Purple}{\sum_{n=2}^{\infty} (\zeta(n) - 1)} = \sum_{n=2}^{\infty}\frac{1}{1-\frac{1}{n}} - 1 - \frac{1}{n} = \sum_{n=2}^{\infty}\frac{1}{n(n-1)} = 1$$

converges by comparison with $\zeta(2)$. And $$\begin{align} &\zeta(n) - 1 \geq 1-\zeta(n)^{-1}\\ &\zeta(n) + \zeta(n)^{-1} \geq 2\\ &\zeta(n) + \frac{1}{\zeta(n)} \geq 2 \end{align}$$

which is always true for any $\zeta(n)$, due to AM-GM inequality. Thus, $$1 = \sum_{n=2}^{\infty} (\zeta(n) - 1) \geq \sum_{n=2}^{\infty} (1 - \zeta(n)^{-1})$$

proving convergence.


Other evaluations of summations using the zeta function have been solved by using various representations of the zeta function. For example, consider the integral representation of $\zeta(n)$ $$\frac{1}{\Gamma(n)}\int_{0}^{\infty} \frac{x^{n-1}}{e^x - 1}dx = \frac{1}{(n-1)!}\int_{0}^{\infty} \frac{x^{n-1}}{e^x - 1}dx$$

Thus, $$\sum_{n=2}^{\infty} (1 - \zeta(n)^{-1)} = \sum_{n=2}^{\infty} \frac{\zeta(n)-1}{\zeta(n)} = \sum_{n=2}^{\infty} [1 - \frac{(n-1)!}{\int_{0}^{\infty} \frac{x^{n-1}}{e^x - 1}dx}]$$

The reciprocal of the integral makes the sum tricky to evaluate. Using other representations of the zeta function results in the same problem. Are there any methods to get a closed form for this summation?


Using the Dirichlet series for the reciprocal zeta function (suggested by Gary), we have

$$\sum_{n=2}^{\infty} (1 - \zeta(n)^{-1}) = \sum_{n=2}^{\infty} (1 - \prod_{p \text{ prime}} (1 - p^{-n})) = \sum_{n=2}^{\infty} (1 - \sum_{m=1}^{\infty}\frac{\mu(m)}{m^n}) = \sum_{n=2}^{\infty} \sum_{m=2}^{\infty}\frac{\mu(m)}{m^n}$$

$$=\sum_{m=2}^{\infty}\frac{\mu(m)}{m(m-1)} = -\sum_{m=1}^{\infty} \frac{\mu(m+1)}{m}$$

Computations suggest this value converges somewhere around $0.705211$.


Thanks.

1 Answers1

1

$$1 + \sum_{n=2}^{\infty} (1 - \zeta(n)^{-1}) = \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} H(j) = C$$

where $H(n)$ is the largest exponent appearing in the unique prime factorization of a natural number $n > 1$, and we define $H(1) = 1$. $C$ is known as Niven's constant.

From above, we have shown that

$$C = 1 - \sum_{m=1}^{\infty} \frac{\mu(m+1)}{m}$$ Thank you Eric for your comment.