How can I prove that $$- \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sum_{k=0}^{\infty} \frac{1}{(n+k)^2} = \frac{\zeta(3)}{4}-\frac{\pi^2}{4} \log (2)$$
The problem comes from this MSE post, where the OP wanted to solve integrals of this form
$$f(x) = \int_{0}^{1} \frac{\ln(t)\ln(1 + t^x)}{t(1-t)}$$
Using the MZIntegrate Mathematica Package, the OP arrived at the result $f(1) = \frac{\zeta(3)}{4}-\frac{\pi^2}{4} \log (2)$. I wanted to mathematically arrive at this result, my attempts are shown below.
Substituting in the taylor series for $\ln(x+1)$, and pulling all constant factors out of the integral, we see that $$\int_{0}^{1} \frac{\ln(t)\ln(1 + t)}{t(1-t)} dt = \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\int_{0}^{1} \frac{\ln(t)t^n}{t(1-t)} dt = \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\int_{0}^{1} \frac{\ln(t)t^{n-1}}{(1-t)} dt$$
Substituting in the geometric series for $\frac{1}{(1-t)}$ $$\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\int_{0}^{1} \frac{\ln(t)t^{n-1}}{(1-t)} dt = \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\int_{0}^1 \ln(t) t^{n-1} \sum_{k=0}^{\infty}t^k dt$$
Rearranging the sums and integrals, we see that
$$\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\int_{0}^1 \ln(t) t^{n-1} \sum_{k=0}^{\infty}t^k dt = \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n} \sum_{k=0}^{\infty}\int_{0}^1 \ln(t) t^{n+k-1} dt$$
The inner integral evaluates to $-\frac{1}{(n+k)^2}$, which is a standard result.
$$\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n} \sum_{k=0}^{\infty}\int_{0}^1 \ln(t) t^{n+k-1} dt = \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n} \sum_{k=0}^{\infty}- \frac{1}{(n+k)^2}$$
Hence, $$\int_{0}^{1} \frac{\ln(t)\ln(1 + t)}{t(1-t)} = - \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n} \sum_{k=0}^{\infty} \frac{1}{(n+k)^2}$$ But how can I continue to show that this sum equals $\frac{\zeta(3)}{4}-\frac{\pi^2}{4} \log (2)$? I am unsure where the denominator of 4 or where $\zeta(3)$ comes from. The inner sum reminds me of the Hurwitz zeta function.
Thanks.