This is not a complete answer; instead, it improves upon L. F.'s previous answer by giving a more approachable form and providing a full derivation for it (see below for a progress update). Previously, L. F. derived
$$I=\sum_{n = 1}^{\infty} \frac{2^{1-\frac{n}{2}}}{n(2n + 1)} \, {_2F_1 \Bigl(\frac{n}{2}, \frac{n + 3}{2}; \frac{n}{2} + 1; \frac{1}{2}\Bigr)}.\label{1}\tag{1}$$
Using this hypergeometric identity, we can rewrite the hypergeometric function within $(1)$ as
$${\left(1-\frac{1}{2}\right)^{-n/2}{_2F_1 \Bigg(\frac{n}{2}, \frac{n}{2}+1-\frac{n+3}{2}; \frac{n}{2} + 1; \frac{\frac{1}{2}}{\frac{1}{2}-1}\Bigg)}=2^{n/2}{_2F_1 \Bigl(\frac{n}{2}, -\frac{1}{2}; \frac{n}{2} + 1; -1\Bigr)}.}$$
Substituting this back into $(1)$, we obtain
$$I={\sum_{n=1}^{\infty}\frac{2}{n(2n+1)}{_2F_1 \Bigl(\frac{n}{2}, -\frac{1}{2}; \frac{n}{2} + 1; -1\Bigr)}.}\tag{2}$$
We can rewrite $(2)$ with the series definition for the hypergeometric function.
$${\sum_{n=1}^{\infty}\frac{2}{n(2n+1)}{_2F_1 \Bigl(\frac{n}{2}, -\frac{1}{2}; \frac{n}{2} + 1; -1\Bigr)}=\sum_{n=1}^{\infty}\frac{2}{n(2n+1)}\sum_{k=0}^{\infty}\frac{(-1)^k\left(\frac{n}{2}\right)_k\left(-\frac{1}{2}\right)_k}{\left(\frac{n}{2}+1\right)_k k!}}$$
Here, $(x)_n$ denotes the rising Pochhammer symbol. (There are various other notations for the rising factorial with $n$ as a superscript, but I chose this convention to help distinguish $(-1)^k$ as a unique factor.) It immediately follows from its definition that $\frac{(x)_n}{(x+1)_n}=\frac{x}{x+n}$; hence, $\frac{(n/2)_k}{(n/2+1)_k}=\frac{n}{2k+n}$. We can use this to rewrite $(2)$ even further.
$${\sum_{n=1}^{\infty}\frac{2}{n(2n+1)}\sum_{k=0}^{\infty}\frac{(-1)^k\left(\frac{n}{2}\right)_k\left(-\frac{1}{2}\right)_k}{\left(\frac{n}{2}+1\right)_k k!}=\sum_{n=1}^{\infty}\frac{2}{2n+1}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k}{(2k+n)k!}}\tag{3}$$
Since there are no issues with absolute convergence, the order of summation can be swapped.
\begin{align*}
\sum_{n=1}^{\infty}\frac{2}{2n+1}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k}{(2k+n)k!}&{=\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k}{k!}\sum_{n=1}^{\infty}\frac{1}{\left(n+\frac{1}{2}\right)\!(n+2k)}}\\
&{=2\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k}{(4k-1)k!}\sum_{n=1}^{\infty}\left(\frac{1}{n+\frac{1}{2}}-\frac{1}{n+2k}\right)}\tag{4}
\end{align*}
With this identity for the digamma function, the inner series in $(4)$ can be expressed as $\psi(2k+1)-\psi(3/2)=\psi(2k+1)+\gamma-2+2\ln{2}$, where $\gamma$ denotes the Euler-Mascheroni constant. Additionally, since $\psi(n+1)+\gamma=H_n$, where $H_n$ is the $n$-th harmonic number, we have $\psi(2k+1)+\gamma-2+2\ln{2}=H_{2k}-2+2\ln{2}$. We can now write $(4)$ as a single sum.
$${2\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k}{(4k-1)k!}\sum_{n=1}^{\infty}\left(\frac{1}{n+\frac{1}{2}}-\frac{1}{n+2k}\right)=2\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k}{(4k-1)k!}(H_{2k}-2+2\ln{2})}\label{5}\tag{5}$$
Since $(x)_n:=\frac{\Gamma(x+n)}{\Gamma(x)}$, we have $(-1/2)_k=\frac{\Gamma(k-1/2)}{\Gamma(-1/2)}=-\frac{2\sqrt{\pi}(2k-3)!!}{2^{k+1}\sqrt{\pi}}=-2^{-k}(2k-3)!!$. Hence, we can write
$${2\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k}{(4k-1)k!}\left(H_{2k}-2+2\ln{2}\right)=-2\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^k(2k-3)!!}{(4k-1)k!}(H_{2k}-2+2\ln{2}).}$$
Jumping back to $\eqref{1}$, we can conclude
\begin{align*}
I &= \sum_{n = 1}^{\infty} \frac{2^{1-\frac{n}{2}}}{n(2n + 1)} \, {_2F_1 \Bigl(\frac{n}{2}, \frac{n + 3}{2}; \frac{n}{2} + 1; \frac{1}{2}\Bigr)} \\
&= -2\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^k(2k-3)!!}{(4k-1)k!}(H_{2k}-2+2\ln{2}).\tag{6}
\end{align*}
This is as far as I can go, as I'm not well-versed with series involving the harmonic numbers and don't immediately see a way to approach the non-harmonic terms (see below). However, this form looks much more pliable than a hypergeometric. It converges very slowly (it's only accurate to 14 decimal digits after a million terms), but it is equivalent to $I$, as shown.
UPDATE: I have found a closed form for the non-harmonic terms and will write my process below.
We want to evaluate
$$4(1-\ln{2})\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^k(2k-3)!!}{(4k-1)k!}.\tag{7}$$
We will write this in terms of the rising factorial to obtain a hypergeometric function again. Note that $\frac{1}{4k-1}=-\frac{-1/4}{k-1/4}=-\frac{(-1/4)_k}{(3/4)_k}$; given that $-2^{-k}(2k-3)!!=(-1/2)_k$ (derived below \eqref{5}), we have
$$\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^k(2k-3)!!}{(4k-1)k!}=\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k\left(-\frac{1}{4}\right)_k}{\left(\frac{3}{4}\right)_k k!}={}_2F_1\biggl(-\frac{1}{2},-\frac{1}{4};\frac{3}{4};-1\biggr).$$
This is of the form ${}_2F_1(a,b;1+a-b;-1)$, with $a=-1/2$ and $b=-1/4$, so we can use this formula from Kummer to rewrite this as
$${}_2F_1\!\biggl(-\frac{1}{2},-\frac{1}{4};\frac{3}{4};-1\biggr)=\frac{\Gamma\big(1-\frac{1}{2}+\frac{1}{4}\big)\Gamma\big(1-\frac{1}{4}\big)}{\Gamma\big(1-\frac{1}{2}\big)\Gamma\big(1-\frac{1}{4}+\frac{1}{4}\big)}=\frac{\Gamma\big(\frac{3}{4}\big)^2}{\sqrt{\pi}}=\frac{2\pi^{3/2}}{\Gamma\big(\frac{1}{4}\big)^2}.\tag{8}$$
Which form to use comes down to personal preference. We can now return to $(7)$ and write
$$4(1-\ln{2})\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^k(2k-3)!!}{(4k-1)k!}=\frac{8\pi^{3/2}}{\Gamma\big(\frac{1}{4}\big)^2}(1-\ln{2}).$$
Thus, we can conclude
$$\boxed{I=\frac{8\pi^{3/2}}{\Gamma\big(\frac{1}{4}\big)^2}(1-\ln{2})+\sum_{k=1}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k-1}H_{2k}(2k-3)!!}{(4k-1)k!}}\tag{9}$$
(the zeroeth term can be removed since $H_0=0$). The problem has now been reduced to a series involving harmonic numbers. It may be useful to convert it to the rising factorials, as I did above, and try to obtain a closed form that way, but the index of $2k$ has thus far made it resistant to my efforts. There is some literature close to what is needed, e.g. Junesang Choi's and H.M. Srivastava's paper here, but I haven't been able to find anything closer. The identity $H_k+H_{k+1/2}=2H_{2k+1}-2\ln{2}$ strikes me as potentially useful, but the $k+1/2$ index again leads me nowhere. Perhaps someone may have further insight.