In an attempt to solve the following hypergeometric series, which is originated from this question, I got the integral: $$ \,_4F_3\left ( \frac14,\frac14,\frac12,\frac12;1,\frac54,\frac54;1 \right ) =\sum_{n=0}^{\infty} \frac{\left ( \frac12 \right )^2_n }{(1)_n^2}\frac{1}{\left ( 4n+1 \right )^2 }=\frac{\Gamma\left ( \frac14 \right )^4 }{64\pi} +\frac{\Gamma\left ( \frac14 \right )^2 }{4\sqrt{2}\pi^{5/2} } \int_{0}^{1} \frac{\ln(x)\ln\left ( \frac{1-x}{1+x} \right ) }{\sqrt{x(1-x^2)} }\text{d}x. $$ Differentiating Euler beta function gives $$ \int_{0}^{1} \frac{\ln\left ( x \right ) \ln\left ( 1-x^2 \right ) }{\sqrt{x\left ( 1-x^2 \right ) } } \text{d} x =\frac{1}{4} \left.\frac{\partial^2}{\partial s\partial t} \operatorname{B}\left ( s+\frac{1}{4},t+\frac12 \right ) \right|_{s=0,t=0} =\frac{\Gamma\left ( \frac14 \right )^2 }{8\sqrt{2\pi} } \left ( 16G-\pi^2-2\pi\ln(2) \right ). $$ But this does not work for our case. We could also expand the logarithm part to derive a twisted hypergeometric series(involving harmonic numbers) but eventually come out a mess. Explicitly we say $$ \int_{0}^{1} \frac{\ln(x)\ln(1-x)}{\sqrt{x\left ( 1-x^2 \right ) } } \text{d}x =\sum_{n=0}^{\infty} \frac{\left ( \frac{1}{2} \right )_n }{n!} \left ( \frac{4}{(4n+1)^2}H_{2n+\frac12} -\frac{2}{4n+1}\psi^{(1)}\left ( 2n+\frac32 \right ) \right ), $$ where $H_n=\gamma+\psi^{(0)}(n+1)$ are generalized harmonic numbers, $\psi^{(0)},\psi^{(1)}$ denote digamma and trigamma function respectively. It is not welcomed so I wonder whether a beautiful closed-form exists. And I am thankful for being given invaluable suggestions and insights.
Personal Attitudes Towards the Existence of a Closed-form.
Closed-forms of the corresponding hypergeometric $L$-values $L(s)=\sum_{n=0}^{\infty}
\frac{\left ( 1/2\right )^2_n }{(1)_n^2}\frac{1}{\left ( 4n+1 \right )^s }$ at odd integers are known. For instance
$$
\sum_{n=0}^{\infty} \frac{\left ( \frac12 \right )_n^2 }{(1)_n^2}
\frac{1}{\left ( 4n+1 \right )^{5} }
=\frac{\Gamma\left ( \frac14 \right )^4 }{32\pi^2}
\left ( G^2+\beta(4) \right ) .
$$
But the cases for even integers remain elusive, just $\zeta(2),\zeta(3)$ alike. Possibly we couldn't express it through conventional mathmatical constants.
Update 1. By standard hypergeometric transformation, we have an equivalent expression. $$ \,_4F_3\left ( \frac{1}{4},\frac{1}{4} ,\frac{1}{2} , \frac12;1,\frac54,\frac54;1 \right ) =\frac{\Gamma\left ( \frac{1}{4} \right )^4 }{32\pi} -\frac{1}{\pi}\,_4F_3\left ( \left \{ 1 \right \}_4; \left \{ \frac32 \right \}_3;1 \right ). $$ Update 2. Making use of the following identity, $$ K\left ( \sqrt{1-x} \right ) =\sum_{n=0}^{\infty} \frac{\left ( \frac12 \right )_n^2}{(1)_n^2} x^n\left ( -\frac12\ln(x)-2\left ( H_{2n}-H_n-\ln(2)\right ) \right ),\quad x\in(0,1], $$ one have $$ \frac{1}{8} \int_{0}^{1} \frac{K\left ( \sqrt{1-x} \right ) }{x^{3/4}} \text{d} x=\frac{\Gamma\left ( \frac14 \right )^4 }{32\pi} =\sum_{n=0}^{\infty} \frac{\left ( \frac12\right )_n^2}{(1)_n^2} \frac{1}{\left ( 4n+1 \right )^2 } -\sum_{n=0}^{\infty}\frac{\left ( \frac12\right )_n^2}{(1)_n^2} \frac{H_{2n}-H_{n}-\ln(2)}{4n+1}. $$ Note that two Fourier-Legendre expansions are given by $$\small \frac{\ln\left ( x(1-x) \right ) }{\sqrt{x(1-x)} } =-2\pi\sum_{n=0}^{\infty} \frac{\left ( \frac12\right )_n^2}{(1)_n^2}(4n+1)\left ( H_{2n}+2\ln(2) \right ) P_{2n}(2x-1),\qquad K\left ( \sqrt{x} \right ) =2\sum_{n=0}^{\infty} \frac{1}{2n+1}P_n(2x-1). $$ Therefore it's possible to prove $\sum_{n=0}^{\infty} \frac{\left ( 1/2\right )_n^2}{(1)_n^2}\frac{H_{2n}}{4n+1} = \frac{\Gamma\left ( \frac{1}{4} \right )^4 }{32\pi^2} (\pi-4\ln(2))$, and we leave the last formulation here. $$ \sum_{n=0}^{\infty} \frac{\left ( \frac12 \right )^2_n }{(1)_n^2\left ( 4n+1 \right ) } \left ( H_n+\frac{1}{4n+1} \right ) =\frac{\Gamma\left ( \frac14 \right )^4}{16\pi^2} \left ( \pi-3\ln(2) \right ). $$