6

I'm trying to solve problem 12 of chapter 2 from Volume I of the book series Methods of modern mathematical physics. The problem goes as follow:

We say that a vector valued function $f$ from a measure space $(X,\mu)$ to a separable Hilbert space $\mathcal{H}$ is measurable, if $\langle \vec{y},f(x) \rangle_{\mathcal{H}}$ is measurable for each $\vec{y}\in\mathcal{H}$.

a) Show that if $f$ and $g$ are measurable vector valued functions, then $\| f(x) \|^2_{\mathcal{H}}$ and $\langle f(x),g(x) \rangle_{\mathcal{H}}$ are measurable.

b) Let $\{ \phi_k \}_{k=1}^{\infty}$ be a basis for $\mathcal{H}$. Prove that if $g\in L_{2}(X,\mu; \mathcal{H})$, then $$\sum_{k=1}^{N} \langle \phi_k,g(x) \rangle_{\mathcal{H}}\phi_k\rightarrow g,$$ and if $f\in L_{2}(X,\mu; \mathcal{H})$, then $$(f,g)=\sum_{k=1}^{\infty}\int_{X}\langle f(x),\phi_k \rangle_{\mathcal{H}} \langle \phi_k,g(x) \rangle_{\mathcal{H}}d\mu(x).$$

c) Assume that $L_2(X,\mu)$ is separable and prove that $L_{2}(X,\mu; \mathcal{H})$ is separable.

I have proved part a) and part b) but I'm having problems with part c).

By part b), I can see that $\sum_{k=1}^{N}\langle \phi_k,g(x) \rangle_{\mathcal{H}}\phi_k$ can approximate $g$. However, I don't know how use this to deduce or construct a countable orthonormal basis of $L_{2}(X,\mu; \mathcal{H})$. Also, I don't know if it would be easier to find an arbitrary dense countable subset of $L_{2}(X,\mu; \mathcal{H})$, not necessarily a basis. If $L_2(X,\mu)$, how can I use this to find a dense countable subset of $L_{2}(X,\mu; \mathcal{H})$? I just need a suggestion or hint please.

Correction: Updated chapter number. I apologize for the mistake.

  • 1
    You should use \langle \rangle for your inner products instead of $<$ and $>$, it'll look better. – Bruno B Dec 21 '24 at 08:52
  • 1
    It also seems like it's from Chapter 2 instead of Chapter 1, at least in my edition of this book by Reed and Simon (it's almost always more useful to name the authors than it is to provide the title in this field, for example Courant and Hilbert also have a book series titled Methods of Mathematical Physics!) – Bruno B Dec 21 '24 at 09:01

4 Answers4

4

The form $(f,g)$ is the inner product in $L^2(X,\mu;\mathcal{H}).$ Let $\{\psi_l\}_{l=1}^\infty$ be an orthonormal basis of $L^2(X,\mu).$ Then $\psi_l(x)\phi_k\in L^2(X,\mu;\mathcal{H}).$ The collection $\psi_l(x)\phi_k$ is linearly dense in $L^2(X,\mu;\mathcal{H}).$ Indeed, assume $(f,\psi_l(x)\phi_k)=0$ for all $k,l. $ Then $$0= \int\limits_X\langle f(x),\phi_k\rangle_\mathcal{H}\,\overline{\psi_l(x)}\,d\mu(x)$$ Hence $$\langle f(x),\phi_k\rangle_\mathcal{H} =0,\ k\in \mathbb{N}$$ Thus $f(x)=0,$ $\mu$ a.e.

3

Let $g_k : x \mapsto \langle \phi_k , g(x)\rangle_\mathcal{H}$. The $g_k$s belong to $L^2(X,\mu)$, and you've shown in $b)$ that $\left(x \mapsto \sum_{k = 1}^N g_k(x) \phi_k\right)_N$ converges to $g$ in $L^2(X, \mu; \mathcal{H})$.
Now consider an orthonormal basis $(\psi_l)_{l \geq 1}$ of $L^2(X,\mu)$, so that $g_k = \sum_{l = 1}^\infty \langle g_k, \psi_l\rangle_{L^2(X,\mu)} \psi_l$ in $L^2(X,\mu)$.
These two convergence results combined with the density of $\mathbb{Q}(i) := \mathbb{Q} + i\mathbb{Q}$ in $\mathbb{C}$ then yield that the countable set $$E := \left\{x \mapsto \sum_{k = 1}^N \sum_{l = 1}^M \alpha_{k,l}\psi_l(x) \phi_k\mid \alpha_{k,l} \in \mathbb{Q}(i), N \geq 1, M \geq 1\right\}$$ will be dense in $L^2(X, \mu; \mathcal{H})$, and $L^2(X, \mu; \mathcal{H})$ is separable.
You can also show that $(\psi_l \phi_k)_{k,l}$ is an orthonormal family of $L^2(X, \mu; \mathcal{H})$ with a somewhat quick calculation using the second part of $b)$.

Bruno B
  • 7,655
3

Here is yet another approach. Let $\{ \phi_{k} : k\in\mathbb{N} \}$ be an orthonormal basis for $\mathcal{H}$. You can use part (b) to immediately conclude that \begin{equation} (\| \langle f(\cdot ), \phi_{k} \rangle_{\mathcal{H}} \|_{L_{2}(X)} )_{k\in\mathbb{N}} \in \ell_{2} \; \text{and} \; \|f\|_{L_{2}(X; \mathcal{H})}^{2} = \sum_{k\in\mathbb{N}} \|\langle f(\cdot ), \phi_{k} \rangle_{\mathcal{H}} \|_{L_{2}(X)}^{2} \tag{$*$} \end{equation} for every $f\in L_{2}(X, \mu ; \mathcal{H})$. Define $\Phi \colon L_{2}(X, \mu ; \mathcal{H}) \to \oplus_{k\in\mathbb{N}} L_{2}(X, \mu )$ by \begin{equation} \Phi f := (\langle f(\cdot ), \phi_{k} \rangle_{\mathcal{H}} )_{k\in\mathbb{N}}. \end{equation} By ($*$) the map $\Phi$ is a well-defined isometry. Hence $L_{2}(X, \mu ; \mathcal{H})$ is isometrically embedded into the Hilbert space $\oplus_{k\in\mathbb{N}} L_{2}(X, \mu )$, the latter of which is separable as it is a countable (Hilbert space) direct sum of separable Hilbert spaces. Therefore $L_{2}(X, \mu ; \mathcal{H})$ is separable as desired. (Note. With some more work it can be shown that $\Phi$ is a unitary operator.)

Dean Miller
  • 7,015
  • 1
  • 7
  • 34
2

This follows easily from a general result on the tensor product of Hilbert spaces (for a proof see here):

Proposition: Let $\mathcal{H}_{1}, \mathcal{H}_{2}$ be Hilbert spaces and $M_{i} \subset \mathcal{H}_{i}$ with $\overline{ \operatorname{span} M_{i}} = \mathcal{H}_{i}$ for $i \in \{1,2\}$. Then $\overline{ \operatorname{span} \{ \varphi \otimes \psi : \varphi \in M_{1} , \psi \in M_{2} \} } = \mathcal{H}_{1} \hat{ \otimes} \mathcal{H}_{2} $.

Here $\mathcal{H}_{1} \hat{ \otimes} \mathcal{H}_{2} $ denotes the Hilbert space tensor product.

$L^2 (X,\mu, \mathcal{H}) = L^2(X,\mu) \hat \otimes \mathcal{H}$. Let $M_1$ be any countable dense subset of $L^2(X,\mu)$ and $M_2$ any countable dense subset of $\mathcal{H}$. Clearly we can approximate any element in $$\operatorname{span} \{ \varphi \otimes \psi : \varphi \in M_{1} ,\psi \in M_{2} \}$$ by an element of $$\operatorname{span}_{\mathbb{Q}+i\mathbb{Q}} \{ \varphi \otimes \psi : \varphi \in M_{1} , \psi \in M_{2} \} $$ (linear combinations with scalars that have only rational real and imaginary parts). This latter set is again countable, since $\mathbb{Q}$ and $M_1, M_2$ are. By the above proposition we conclude that $$ \overline{ \operatorname{span}_{\mathbb{Q}+i\mathbb{Q}} \{ \varphi \otimes \psi : \varphi \in M_{1} , \psi \in M_{2} \}} = L^2(X,\mu,\mathcal{H})$$ and so $L^2(X,\mu,\mathcal{H})$ has a dense countable subset. Actually the argument works for the tensor product of any two separable Hilbert spaces.

jd27
  • 3,489