How can we prove the following equality?
$$\pi = \frac{10}{3}\;\sum_{n=0}^\infty\frac{(-1)^{n}}{2n+1}\left(\frac{\varphi^{2}}{3-\varphi}\right)^{n+ \frac{1}{2} }$$ where $\varphi=1.618\ldots$ is the golden ratio.
my work:
$$\sum _ {n=0} ^ \infty \frac{ (-1)^{n} }{2n+1} ( \frac{ \varphi ^{2} }{3- \varphi } )^{n+ \frac{1}{2} }$$ is really simillar to the taylor series for $\tan^{-1}(x)$ which is: $$\tan^{-1}(x)=\sum _ {n=0} ^ \infty \frac{ (-1)^{n} }{2n+1} (x )^{2n+1}$$ now let $x=( \frac{ \varphi ^{2} }{3- \varphi } )^{\frac{1}{2}}$ then we have:
$$x=( \frac{ \varphi ^{2} }{3- \varphi } )^{\frac{1}{2}} = ( \frac{ 1+\varphi }{3- \varphi } )^{\frac{1}{2}} = \sqrt{\frac{1+\frac{1+\sqrt{5}}{2}}{3-\frac{1+\sqrt{5}}{2}}} = \sqrt{\frac{\frac{3+\sqrt{5}}{2}}{\frac{5-\sqrt{5}}{2}}} = \sqrt{\frac{3+\sqrt{5}}{5-\sqrt{5}}} = \sqrt{\frac{20+8\sqrt{5}}{20}} = \sqrt{1+\frac{2\sqrt{5}}{5}}$$ now if $\pi=\frac{10}{3}\tan^{-1}(x)$ then $\tan^{-1}(x)=\frac{3\pi}{10}$ so $\tan(\frac{3\pi}{10})=x=\sqrt{1+\frac{2\sqrt{5}}{5}}$
then how can we show that $\tan(\frac{3\pi}{10})=\sqrt{1+\frac{2\sqrt{5}}{5}}$