I just stumbled accross this question and I am unable to move ahead in the problem.
What is the value of the following summation? $$\sum_{r=1}^{88}{(-1)^{r+1}\frac{1}{\sin^2(r+1^\circ)-\sin^2(1^\circ)}}$$
MY APPROACH:
Step 1: Expand.
This is what I usually do when I come accross a summation till a specific number.
$$\begin{align} \sum_{r=1}^{88}{(-1)^{r+1} \frac{1}{\sin^2(r+1^\circ)- \sin^2(1^\circ)}} &= \frac{1}{\sin^2(2^\circ)-\sin^2(1^\circ)}-\frac{1}{\sin^2(3^\circ)-\sin^2(1^\circ)} \\ &\quad+\frac{1}{\sin^2(4^\circ)-\sin^2(1^\circ)}\cdots-\frac{1}{\sin^2(89^\circ)-\sin^2(1^\circ)} \\ &= \frac{1}{[\sin(2^\circ)+\sin(1^\circ)][\sin(2^\circ)-\sin(1^\circ)]} \\ &\quad-\frac{1}{[\sin(3^\circ)+\sin(1^\circ)][\sin(3^\circ)-\sin(1^\circ)]} \\ &\quad+\frac{1}{[\sin(4^\circ)+\sin(1^\circ)][\sin(4^\circ)-\sin(1^\circ)]} \cdots \\ &\quad-\frac{1}{[\sin(89^\circ)+\sin(1^\circ)][\sin(89^\circ)-\sin(1^\circ)]} \end{align}$$
Now, I think I have to apply $\sin(90^\circ-\theta) = \cos(\theta)$, but I'm not very sure about where and how to apply this.
Tell me if I have to. And if so, where. All solutions are encouraged. :)
Also, the answer given was $\dfrac{\cot(2^\circ)}{\sin(2^\circ)}$.
Tell me if this is correct. If so, how do you reach to that answer?
Thank you.