I am trying to prove that $\sum_{i=1}^n i^3 = \frac{n^2(n+1)^2}{4} = \frac{n^4+2n^3+n^2}{4}$.
I experimented by setting n = 5 and writing $1 + 8 + 27 + 64 + 125 = 1 + (1 + 7) + (1 + 7 + 19) + (1 + 7 + 19 + 37) + (1 + 7 + 19 + 37 + 61)$
We can rewrite this as $1 + (1 + (1 + 6)) + (1 + (1 + 6) + (1 + 6 + 12)) + (1 + (1 + 6) + (1 + 6 + 12) + (1 + 6 + 12 + 18)) + (1 + (1 + 6) + (1 + 6 + 12) + (1 + 6 + 12 + 18) + (1 + 6 + 12 + 18 + 24))$.
This is $\sum_{i=1}^5 i^3 = \sum_{i=1}^5 i + 6\sum_{i=1}^4 i + 12\sum_{i=1}^3 i + + 18\sum_{i=1}^2 i + 24$.
For any n, we write $\sum_{i=1}^n i^3 = \sum_{i=1}^n i + \sum_{i=1}^{n - 1}[6i\sum_{j=1}^{n - i}j]$.
Carrying out some summations, we get $\sum_{i=1}^n i^3 = \frac{n(n+1)}{2} + \sum_{i=1}^{n - 1}\frac{6i(n-i)(n-i+1)}{2}$.
Knowing that $i(n-i)(n-i+1)$ expands to $n^2i - ni^2 + ni - ni^2 + i^3 - i^2$, we write:
$\sum_{i=1}^n i^3 = \frac{n(n+1)}{2} + 3[(n^2 + n) \sum_{i=1}^{n - 1}i + (-2n -1)\sum_{i=1}^{n - 1}i^2 + \sum_{i=1}^{n - 1}i^3]$
We rewrite $\sum_{i=1}^{n - 1}i^3$ as $\sum_{i=1}^{n}i^3 - (n-1)^3$
Combining the $i^3$ summations and expanding, we get $-2\sum_{i=1}^{n}i^3 = \frac{n(n+1)}{2} + 3(n^2 + n)\frac{(n-1)n}{2} + 3(-2n-1)\frac{(n-1)(n)(2n-1)}{6} - 3(n-1)^3$
This simplifies to $\sum_{i=1}^{n}i^3 = \frac{n^4+2n^3-17n^2+18n-6}{4}$, which is off from our desired result of $\frac{n^4+2n^3+n^2}{4}$. Any thoughts would be appreciated. Thank you.