How can we show that
- The integral is finite, i.e., $$\int_{0}^{\infty} e^{-\epsilon x} \frac{\sin x}{x} dx < \infty.$$
$$ \lim_{\epsilon \rightarrow 0} \int_{0}^{\infty} e^{-\epsilon x} \frac{\sin x}{x} dx = \int_{0}^{\infty} \frac{\sin x}{x} dx. $$
Actually, in [Stein-Weiss, Fourier analysis, p. 5], they give a more genernal statement as follows,
If $f$ is locally integrable and $\lim_{p\rightarrow \infty} \int_0^p f(x) dx=l$, then the Abel means $A_\epsilon = \int_0^{\infty} e^{-\epsilon x} f(x) dx$ converge to $l$.
I think integral by part will be helpful. Any hint will be helpful. Thanks in advance.
I will give proof of the above statement here, since it seems that I can't write an answer now.
Firstly, we have \begin{align} \int_0^\infty e^{-\epsilon x} f(x) dx & = \int_0^\infty e^{-\epsilon x} d\left[\int_0^x f(t) dt\right] \\ & = \left.e^{-\epsilon x} \int_0^x f(t) dt \right|_0^{\infty} + \epsilon \int_0^{\infty} \left[\int_0^x f(t) dt\right] e^{-\epsilon x} dx \\ & = \epsilon \int_0^{\infty} \left[\int_0^x f(t) dt\right] e^{-\epsilon x} dx =I_{\epsilon}. \end{align} Then letting $\epsilon x =y$, then we have $$ I_{\epsilon} = \int_0^{\infty} \left[ \int_0^{y/\epsilon} f(t)dt\right] e^{-y} dy. $$ By Lebesgue's dominated theorem, we have $$ \lim_{\epsilon \rightarrow 0_+} I_{\epsilon} = \int_{0}^{\infty} \int_0^{\infty} f(t) dt e^{-y} dt = l. $$