If the characteristic of $k$ is $2$, then $\newcommand{\V}{\mathbb{V}} x^2 + y^2 - 1 = (x+y+1)^2$, so
\begin{align*}
\V(x^2 + y^2 - 1) = \V((x+y+1)^2) = \V(x+y+1) \, .
\end{align*}
Then
$$
V = \V(x+y+1) \cap \V(x+y) = \varnothing \, ,
$$
so $\newcommand{\I}{\mathbb{I}} \I(V) = k[x,y]$.
If the characteristic is not $2$, then
\begin{align*}
2y^2-1 = x^2 + y^2 - 1 - (x+y)(x-y) \in (x^2+y^2-1, x-y)
\end{align*}
as you mentioned, and we have $(x^2+y^2-1, x-y) = (2y^2 - 1, x-y)$. Then
\begin{align*}
(x^2+y^2-1, x-y) &= (2y^2 - 1, x-y) = (y^2 - 1/2, x-y)\\
&= ((y-1/\sqrt{2})(y+1/\sqrt{2}), x-y)\\
&= (y-1/\sqrt{2}, x-y)(y+1/\sqrt{2}, x-y)\\
&= (x-1/\sqrt{2}, y-1/\sqrt{2})(x+1/\sqrt{2}, y+1/\sqrt{2}) \, .
\end{align*}
Since
\begin{align*}
1 = -\frac{1}{\sqrt{2}}\left(\left(y-1/\sqrt{2}\right) - \left(y+1/\sqrt{2}\right) \right) \in (x-1/\sqrt{2}, y-1/\sqrt{2}) + (x+1/\sqrt{2}, y+1/\sqrt{2}) \, ,
\end{align*}
then $(x-1/\sqrt{2}, y-1/\sqrt{2}) + (x+1/\sqrt{2}, y+1/\sqrt{2}) = k[x,y]$. The product of comaximal ideals is equal to their intersection (see here or here), so
\begin{align*}
(x^2+y^2-1, x-y) &= (x-1/\sqrt{2}, y-1/\sqrt{2})(x+1/\sqrt{2}, y+1/\sqrt{2})\\
&= (x-1/\sqrt{2}, y-1/\sqrt{2}) \cap (x+1/\sqrt{2}, y+1/\sqrt{2}) \, .
\end{align*}
Thus
\begin{align*}
\V(x^2+y^2-1, x-y) &= \V\left((x-1/\sqrt{2}, y-1/\sqrt{2}) \cap (x+1/\sqrt{2}, y+1/\sqrt{2})\right)\\
&= \V\left((x-1/\sqrt{2}, y-1/\sqrt{2})\right) \cup \V\left(x+1/\sqrt{2}, y+1/\sqrt{2})\right)\\
&=\{(1/\sqrt{2}, 1/\sqrt{2}), (-1/\sqrt{2}, -1/\sqrt{2})\} \, .
\end{align*}
This agrees with the intuitive geometric picture: this set is the intersection of the unit circle with the line $y=x$.