Find all positive integers $a,b > 1$ that satisfy: $$b^a\mid a^b-1.$$
If I let $p$ be the biggest prime divisor of $b$, I get $$ord_p(a)\mid b$$ $$ord_p(a)\mid\space p-1.$$ Then $ord_p(a)=1$ so $p\mid a-1$, and I got stuck.
Find all positive integers $a,b > 1$ that satisfy: $$b^a\mid a^b-1.$$
If I let $p$ be the biggest prime divisor of $b$, I get $$ord_p(a)\mid b$$ $$ord_p(a)\mid\space p-1.$$ Then $ord_p(a)=1$ so $p\mid a-1$, and I got stuck.
a\mid bfor $a\mid b.$ – Thomas Andrews Dec 09 '24 at 17:15