Thank you so much guys for your prompt answers.
Thanks to the answer of lab bhattacharjee , I have come to the solution:
To evaluate:
$$
\lim_{x \to 0} \frac{\cos x - \ln(1+x) - \sqrt{1+2x}}{x^2},
$$
without using L’Hôpital's Rule or Taylor expansion, we can proceed by decomposing the expression as follows:
$$
\frac{\cos x - \ln(1+x) - \sqrt{1+2x}}{x^2} =
\frac{1 - \cos x}{x^2} + \frac{-\ln(1+x) + x}{x^2} + \frac{1 - x - \sqrt{1+2x}}{x^2}.
$$
Now, let’s handle each term separately.
1. $\frac{1 - \cos x}{x^2}$
This is a well-known trigonometric limit:
$$
\lim_{x \to 0} \frac{1 - \cos x}{x^2} = -\frac{1}{2}.
$$
2. $\frac{-\ln(1+x) + x}{x^2}$
This limit has been tackled here and it is equal to $\frac{1}{2}.$
3. $\frac{1 - x - \sqrt{1+2x}}{x^2}$
For this term, we are going to multiply the numerator and denominator by the conjugate $(1 - x + \sqrt{1+2x})$:
$$
\frac{1 - x - \sqrt{1+2x}}{x^2} = \frac{(1 - x - \sqrt{1+2x})(1 - x + \sqrt{1+2x})}{x^2(1 - x + \sqrt{1+2x})} = \frac{x^2 - 4x}{x^2(1 - x + \sqrt{1+2x})}. = \frac{x-4}{x(1 - x + \sqrt{1+2x})}.
$$
As $x \to 0$, the denominator $x(1 - x + \sqrt{1+2x}) \to 0$, while the numerator $(x-4) \to -4$. Thus, this term diverges to $\infty$.
Now combine all terms:
$$
\lim_{x \to 0} \frac{\cos x - \ln(1+x) - \sqrt{1+2x}}{x^2} = \infty.
$$