Proof$_{\:\!1}$ $\!\bmod 20\!:\, 7\equiv 3^{-1}$ so $\,3^a7^b\!\equiv 3^{a-b}\!\in S\equiv \{1,3,9,7\}\,$ but $\,133\!\equiv\! 13\not\in S$ $\,\ \bf\small QED$
Proof$_{\:\!2}$ $ \bmod 4\!:\, \ \ \ \color{#c00}1\equiv 133\ \equiv\,\ 3^{\large a} \color{0af}7^{\large b}\ \equiv \color{#c00}{(-1)^{\color{0af}{\large a+b}}} \Rightarrow\,a\!+\!b\,\ \rm\color{#0a0}{even}$
$\qquad\quad\ \bmod 5\!:\, \color{#c00}{{-}1}\equiv 133^2\!\equiv 3^{\large 2a}7^{\large 2b^{\phantom{|^.}}}\!\!\!\equiv \color{#c00}{(-1)^{\large \color{0af}{a+b}}}\Rightarrow\, a\!+\!b\,\ \rm\color{#0af}{odd},\,$ contra above. $\, \ \small\bf QED$
Update $ $ In reply to comments (& the $5$ downvotes!) I expand on the (fundamental) method used. If $\:3^a7^b\equiv 133\pmod{\!10^3}\,$ has a solution $\,a,b\in\Bbb N\,$ then it remains a solution $\!\bmod n\,$ for every factor $\,n\,$ of $\,10^3.\,$ We start by testing the smallest factors: $\,2,4,5\ldots\ $ First $\!\bmod 2\,$ it's always true $\,1^a 1^b\equiv 1.\,$ Next, $\bmod 4,\,$ we get $\,\color{#c00}{(-1)^{a+b}\equiv 1},\,$ thus $\,a\!+\!b\,$ is $\rm\color{#0a0}{even}.\,$ Next $\!\bmod 5\,$ it's $\,3^a 2^b\!\equiv 3;\,$ squaring, by $\,3^2,2^2\equiv -1\,$ we get $\,\color{#c00}{(-1)^{a+b}\equiv -1},\: $ so $\ a\!+\!b\,$ is $\rm\color{#0af}{odd},\,$ contra, above. [The first proof is an optimization - we further require that the two generators $\:\!7,3\:\!$ collapse to one via $\,7^k\equiv 3.\,$ Quickly we find a small value $\,k=-1\,$ that works, where $\,7^{-1}\equiv 3\!\iff\! 1\equiv 21\!\iff\! 20\equiv 0$].
Summarizing: no solution exists $\!\bmod 10^3$ since assuming so leads to a $\rm\color{#0a0}{parity}$ $\rm\color{#0af}{contradiction}$ when reducing the purported solution $\!\bmod 4\,$ and $\!\bmod 5.\,$ Such modular reduction obstructions are one of the simplest and most widely used methods to prove Diophantine equations unsolvable.