$\DeclareMathOperator{\P}{\mathbb{P}}\DeclareMathOperator{\supp}{\mathrm{supp}}$
There is a bit of confusion about the support of random variables.
The support of a random variable $Z$ is defined as the support of its distribution $\P(Z\in\cdot)$, which is the set of the points whose every open neighbohrood $N$ has the property that $\P(Z\in N)>0$, that is
$$\supp(Z):=\{z:\mathbb P(Z\in N)>0,\forall N\text{ neighbohrood of $z$}\}.$$
Thus, acting as the function $g(x,y)$ from $\mathbb R^2$ to $\mathbb R$, $Z$ doesn't take the value $z=0$; but, acting as the random variable $Z=g(X,Y),$ $Z$ does take the value $z=0$, in the sense that $0\in\supp(Z)$. To see that, we'll compute the distribution of $Z$ and we'll find out that
$$\mathbb P(Z\in(-\varepsilon,\varepsilon))>0, \: \forall\varepsilon>0.$$
Define $X':=-X$. Conditioning on the sign of $XY$, we get
\begin{align}
F_Z(z)&=\P(Z\le z)\\&=\P(XY>0)\P(Z\le z\mid XY>0) \\&+ \P(XY<0)\P(Z\le z\mid XY<0)\\&=\P(XY>0)\P(X\le z\mid XY>0) \\&+ \P(XY<0)\P(-X\le z\mid XY<0)\\&=\P(XY>0)\P(X\le z\mid XY>0) \\&+ \P(X'Y>0)\P(X'\le z\mid X'Y>0)\\&=2\P(XY>0)\P(X\le z\mid XY>0)\\&=2\P(X\le z, XY>0).
\end{align}
The penultimate equality holds because $(X,XY)$ and $(X',X'Y)$ are identically distributed. Conditioning on the sign of $Y$, we get
\begin{align}
F_Z(z)&=2\P(X\le z, XY>0)\\&=2\P(Y>0)\P(X\le z, XY>0\mid Y>0)\\&+2\P(Y<0)\P(X\le z, XY>0\mid Y<0)\\&=\P(X\le z, XY>0\mid Y>0)\\&+\P(X\le z, XY>0\mid Y<0)\\&=\P(X\le z, X>0\mid Y>0)\\&+\P(X\le z, X<0\mid Y<0)\\&=\P(X\le z, X>0)\\&+\P(X\le z, X<0).
\end{align}
The last equality holds because $X$ and $Y$ are independent. We have
\begin{align}
F_Z(z)&=\P(X\le z, X>0)+\P(X\le z, X<0)\\&=
\begin{cases}
0+\P(X\le z),&\text{if $z\le0$,}\\
\P(0\le X\le z)+\P(X\le 0),&\text{if $z\ge0$,}
\end{cases}\\&=F_X(z).
\end{align}
Thus, $Z$ is $\mathrm{N}(0,1)$-distributed too. Finally note that $0\in\supp(Z)$ because $$\mathbb P(Z\in(-\varepsilon,\varepsilon))>0, \: \forall\varepsilon>0.$$