i have some difficults to prove that the fourier series of
$$ f(x) = \begin{cases} 0, & -\pi < x \leq 0, \\ x^2, & 0 < x \leq \pi. \end{cases} $$
can be aproximated to
$$ \frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots$$
My attempt:
I computed the fourier series of $f$ and i get:
$$f(x) = \frac{\pi^2}{6} + \sum_k^\infty \left(\frac{2(-1)^k}{k^2}\cos(kx) + \frac{1}{\pi}\left[\frac{-\pi^2k^2(-1)^k + 2(-1)^k-2}{k^3}\right]\sin(kx)\right)$$
If $x = 0$ then
$0 = f(0) = \frac{\pi^2}{6} + \displaystyle\sum_k^{\infty} \frac{2(-1)^k}{k^2}$
that implies
$\frac{\pi^2}{6} = -\displaystyle\sum_k^{\infty} \frac{2(-1)^k}{k^2}$
Here i'm stuck, can someone help me?