We know that for $x_{1} \neq x_{2}$, $$ \sum_{\substack{\mbox{}\\ i_{1},\ i_{2}\ \in\ \mathbb{N}_{\ \geq\ 0} \\[1mm] i_{1}\ +\ i_{2}\ =\ n}} x_{1}^{i_{1}}\,x_{2}^{i_{2}}\ =\ \frac{x_{1}^{n + 1} - x_{2}^{n + 1}}{x_{1} - x_{2}} $$ See, e.g., a previous question.
Q: Can we extend this to higher orders ?, i.e., can we have a nice formula for $$ \sum_{\substack{\mbox{}\\ i_{1},\ i_{2},\ \ldots,\ i_{k}\ \in\ \mathbb{N}_{\,\geq\ 0}\\[1mm] i_{1}\ +\ i_{2}\ +\ \cdots\ +\ i_{k}\ =\ n}} \rule{4mm}{0pt} \prod_{s\ =\ 1}^{k}x_{s}^{i_{s}}\,\,\, {\large ?}. $$
What I have tried: Is this correct?
- Using generating function \begin{align} \operatorname{G}\left(x\right) & = \prod_{s\ =\ 1}^{k}\frac{1}{1 - x_{s}x}, \\ \mbox{we have}\quad \frac{1}{1 - x_{s}x} & = \sum_{m\ =\ 0}^{\infty}x_{s}^{m}\,x^{m} \\ \mbox{and thus}\quad \operatorname{G}\left(x\right) & = \sum_{m\ =\ 0}^{\infty}x^{m} \left(\sum_{\substack{\mbox{}\\ i_{1},\ i_{2},\ \ldots,\ i_{k}\ \in\ \mathbb{N}_{\,\geq\ 0} \\[1mm] i_{1}\ +\ i_{2}\ +\ \cdots\ +\ i_{k}\ =\ m}} \rule{5mm}{0pt} \prod_{s\ =\ 1}^{k}x_{s}^{i_{s}}\right) \end{align} Therefore, the coefficient of $x^{n}$ in $\operatorname{G}\left(x\right)$ would be the answer.
- Assuming all $x_{i}$'s are distinct, use partial fraction decomposition: $$ \operatorname{G}\left(x\right) = \sum_{s\ =\ 1}^{k}\frac{A_{s}}{1 - x_{s}x} $$
- Multiply both sides by $\prod_{s\ =\ 1}^{k}\, \left(1 - x_{s}x\right)$: \begin{align} 1 & = \sum_{s}A_{s} \prod_{\substack{\mbox{}\\ \ell\ \neq\ s}} \left(1 - x_{\ell}x\right) \\[2mm] \mbox{Let}\ x = {1 \over x_{s}}:\quad 1 & = A_{s}\prod_{\substack{\mbox{}\\ \ell\ \neq\ s}}\left(1 - \frac{x_{\ell}}{x_{s}}\right) \\[2mm] \mbox{and thus}\quad A_{s} & = \frac{1}{\prod_{\ell\ \neq\ s} (1 - \frac{x_\ell}{x_s})} \end{align}
- Hence, the coefficient of $x^{n}$ in $\operatorname{G}\left(x\right)$ is: $$ \sum_{s}A_{s}\,x_{s}^{n}\ =\ \sum_{s}\frac{x_{s}^{n}} {\prod_{\ell\ \neq\ s}\, \left(1 - x_{\ell}/x_{s}\right)} $$