$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{{\displaystyle #1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iverson}[1]{\left[\left[\,{#1}\,\right]\right]}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\sr}[2]{\,\,\,\stackrel{{#1}}{{#2}}\,\,\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
& \color{#44f}{\sum_{n = 0}^{10}\pars{-1}^{n}\,
{10 \choose n}{12 + n \choose n}}
\\[5mm] = & \
\sum_{n = 0}^{10}\pars{-1}^{n}\,
{10 \choose n}\bracks{{-12 - n + n - 1 \choose n}\pars{-1}^{n}}
\\[5mm] = & \
\sum_{n = 0}^{10}{10 \choose n}{-13 \choose -13 - n}
\\[5mm] = & \
\sum_{n = 0}^{10}{10 \choose n}\bracks{z^{-13 - n}\,}
\pars{1 + z}^{-13}
\\[5mm] = & \
\bracks{z^{-13}}\pars{1 + z}^{-13}\,
\sum_{n = 0}^{10}{10 \choose n}z^{n}
\\[5mm] = & \
\bracks{z^{-13}}\pars{1 + z}^{-13}\,
\pars{1 + z}^{10}
\\[5mm] = & \
\bracks{z^{-13}}\pars{1 + z}^{-3} =
{-3 \choose -13}
\\[5mm] = & \
\pars{-1}^{\pars{-3}\ -\ \pars{-13}}\,\,\,\,
{-\bracks{-13} - 1 \choose -3 - \bracks{-13}}
\\[5mm] = & \ {12 \choose 10} =
{12 \times 11 \over 2} =
\bbx{\color{#44f}{66}}
\end{align}