Note : Apologies, this post is a long read
$$I=\int_{0}^1 \ln^2(1-x)\ln^2(1+x)\,dx$$
I have tried differentiating the beta function but for that no substitution seems to work and also tried different identities but none of them seem to break this product into simpler integrals.
This seems the only similar integral I could find, from which I have tried the above methods.
How do I proceed in this integral?
My attempt:
Here is one identity that made split the product to "slightly" doable form,
$$x^2y^2=\frac{(x+y)^4+(x-y)^4-2x^4-2y^4}{12}$$
$$x=\ln(1-t)\,||||\,y=\ln(1+t)$$
$$(\ln(1-t))^2(\ln(1+t))^2=\frac{(\ln(1-t)+\ln(1+t))^4+(\ln(1-t)-\ln(1+t))^4-2(\ln(1-t))^4-2(\ln(1+t))^4}{12}$$
$$\ln^2(1-t)\ln^2(1+t)=\frac{(\ln(1-t)+\ln(1+t))^4+(\ln(1-t)-\ln(1+t))^4-2\ln^4(1-t)-2\ln^4(1+t)}{12}$$
$$\ln^2(1-t)\ln^2(1+t)=\frac{(\ln(1-t)+\ln(1+t))^4}{12}+\frac{(\ln(1-t)-\ln(1+t))^4}{12}-\frac{\ln^4(1-t)}{6}-\frac{\ln^4(1+t)}{6}$$
$$I=\int_{0}^1 \ln^2(1-t)\ln^2(1+t)\,dt$$
The above integral becomes,
$$I=\int_{0}^1 \frac{(\ln(1-t)+\ln(1+t))^4}{12}+\frac{(\ln(1-t)-\ln(1+t))^4}{12}-\frac{\ln^4(1-t)}{6}-\frac{\ln^4(1+t)}{6}\,dt$$
$$I=\frac{1}{12}I_1+\frac{1}{12}I_2-\frac{1}{6}I_3-\frac{1}{6}I_4\tag1$$
Where,
$$I_1=\int_{0}^1 (\ln(1-t)+\ln(1+t))^4\,dt=\int_{0}^1 \ln^4(1-t^2)\,dt\tag2$$ $$I_2=\int_{0}^1 (\ln(1-t)-\ln(1+t))^4\,dt=\int_{0}^1 \ln^4\left(\frac{1-t}{1+t}\right)\,dt\tag3$$ $$I_3=\int_{0}^1 \ln^4(1-t)\,dt\tag4$$ $$I_4=\int_{0}^1 \ln^4(1+t)\,dt\tag5$$
For $(4)$, I have found this below generalization, $$\int_{0}^1\ln^n(1-x)dx=(-1)^n n!$$
Is there any text/post with the generalisation for this?
$$I=\int_{0}^1 \ln^n(1-x)\ln^n(1+x)\,dx$$
Edit 1 :
$$I_1=\int_{0}^1 \ln^4(1-t^2)\,dt$$
$t^2=x\implies dt=\frac{1}{2}x^{-\frac{1}{2}}\,dx$
$$I_1=\frac{1}{2}\int_{0}^1 x^{-\frac{1}{2}}\ln^4(1-x)\,dx$$
This can be rewritten as $(x\to t)$,
$$I_1=\frac{1}{2}\int_{0}^1 (1-t)^{-\frac{1}{2}}\ln^4(t)\,dt$$
Inspired from the answers to one of my old question,
Considering the fourth derivative,
$$I_1=\frac{1}{2}\int_0^1 (1-t)^{-\frac{1}{2}}t^n\,dt=\frac{1}{2}\beta\left(n+1,\frac{1}{2}\right)$$
$$\frac{\partial^4{I_1}}{\partial n^4}=\frac{1}{2}\int_{0}^1 (1-t)^{-\frac{1}{2}}\ln^4(t)t^n\,dt$$
Put $n=0$,
$$\frac{\partial^4{I_1}}{\partial n^4}=\int_{0}^1 \ln^4(1-t^2)\,dt=\frac{1}{2}\lim_{n\to 0}\frac{\partial^4}{\partial n^4}\beta\left(n+1,\frac{1}{2}\right)$$
Now took some help of WA to compute this fourth derivative,
$$\int_{0}^1 \ln^4(1-t^2)\,dt=\frac{1}{2}\lim_{n\to 0}\frac{\partial^4}{\partial n^4}\beta\left(n+1,\frac{1}{2}\right)$$
$$ \boxed{I_1 = -96 (\zeta(3) - 4) + \ln(4) \Big( 48 (\zeta(3) - 4) + \ln(4) \big( 48 + (\ln(4) - 8)\ln(4) \big) \Big) - \frac{3 \pi^4}{5}-2 \pi^2 \big( 8 + (\ln(4) - 4)\ln(4) \big)} $$
Taken from here
Edit 2 :
From @Claude Leibovici's comment,
$$\int_{0}^{1} \ln^n(1+t) \, dt = (-1)^n (\Gamma(n+1, -\log(2)) - n \Gamma(n))$$
Put $n=4$,
$$\boxed{I_4= \Gamma(5, -\log(2)) - 4 \Gamma(4)}$$
Edit 3 :
Put $n=4$ in the above found generalization,
$$\boxed{I_3=24}$$
Edit 4 : Regarding the below integral,
$$I_2=\int_{0}^1 (\ln(1-t)-\ln(1+t))^4\,dt=\int_{0}^1 \ln^4\left(\frac{1-t}{1+t}\right)\,dt\tag3$$
I put $\frac{1-t}{1+t}=t$
$$I_2=2\int_{0}^1\frac{\ln^4(t)}{(1+t)^2}\,dt$$
Here, I used the series expansion of $\frac{1}{(1+t)^2}$ and solved to get, $$\boxed{I_2=42\zeta(4)=\frac{7}{15}\pi^4}$$
Edit 5 :
Using the other integral representation of the Beta function,
$$\int_{-1}^1(1-t)^{a-1}(1+t)^{b-1}\,dt=2^{a+b-1}\beta(a,b)$$
Double Derivative with respect to $b$ then Double Derivative with respect to $a$
$$2\int_{-1}^1(1-t)^{a-1}(1+t)^{b-1}\ln^2(1+t)\ln^2(1-t)\,dt=\frac{\partial^2}{\partial a^2}\left(\frac{\partial^2}{\partial b^2}\left(2^{a+b}\beta(a,b)\right)\right)$$
\begin{aligned} &= \psi^{(0)}(a + b)^2 + \psi^{(0)}(b) (\ln(4) - 2 \psi^{(0)}(a + b)) - \ln(4) \psi^{(0)}(a + b) - \psi^{(1)}(a + b) \\ &\quad + \psi^{(0)}(b)^2 + \psi^{(1)}(b) + \ln^2(2) \left( \ln^2 2 \cdot 2^{a+b} \cdot B(a, b) \right) \\ &\quad + 2^{a+b} \left[ \left( \psi^{(0)}(a) - \psi^{(0)}(a + b) \right)^2 B(a, b) + \left( \psi^{(1)}(a) - \psi^{(1)}(a + b) \right) B(a, b) \right] \\ &\quad + \ln(2) \cdot 2^{a+b+1} \left( \psi^{(0)}(a) - \psi^{(0)}(a + b) \right) B(a, b) \\ &\quad + 2 \left[ -2 \psi^{(0)}(b) \psi^{(1)}(a + b) + 2 \psi^{(0)}(a + b) \psi^{(1)}(a + b) - \psi^{(2)}(a + b) \right] \\ &\quad - \ln(4) \psi^{(1)}(a + b) \left( \ln(2) \cdot 2^{a+b} \cdot B(a, b) + 2^{a+b} (\psi^{(0)}(a) - \psi^{(0)}(a + b)) B(a, b) \right) \\ &\quad + \left( 2^{a+b} \cdot B(a, b) \right) \left[ 2 \psi^{(1)}(a + b)^2 - 2 \psi^{(0)}(b) \psi^{(2)}(a + b) + 2 \psi^{(0)}(a + b) \psi^{(2)}(a + b) \right] \\ &\quad - \ln(4) \psi^{(2)}(a + b)- \psi^{(3)}(a + b) \end{aligned}
Now putting $a=b=1$ and with help of this and this,
Using the fact that the integrand is even,
$$\int_{0}^1\ln^2(1-t)\ln^2(1+t)\,dt= 24 - 8\zeta(2) - 8\zeta(3) - \zeta(4) + 8\zeta(2) \ln(2) - 4\ln^2(2) \zeta(2) + 8\ln(2) \zeta(3) - 24\ln(2) + 12\ln^2(2) - 4\ln^3(2) + \ln^4(2)$$
Numerical check - here
Perhaps the generalization is as follows,
$$\int_{0}^1\ln^n(1+t)\ln^n(1-t)\,dt=\frac{1}{4}\lim_{(a,b)\to (1,1)}\frac{\partial^n}{\partial a^n}\left(\frac{\partial^n}{\partial b^n}\left(2^{a+b}\beta(a,b)\right)\right)$$
Now the question, is there any closed form available for that above expression?
@AmrutAyan Your result evaluates to $0.334535$.
– gpmath Nov 23 '24 at 17:41