17

Note : Apologies, this post is a long read

$$I=\int_{0}^1 \ln^2(1-x)\ln^2(1+x)\,dx$$

I have tried differentiating the beta function but for that no substitution seems to work and also tried different identities but none of them seem to break this product into simpler integrals.

This seems the only similar integral I could find, from which I have tried the above methods.

How do I proceed in this integral?

My attempt:

Here is one identity that made split the product to "slightly" doable form,

$$x^2y^2=\frac{(x+y)^4+(x-y)^4-2x^4-2y^4}{12}$$

$$x=\ln(1-t)\,||||\,y=\ln(1+t)$$

$$(\ln(1-t))^2(\ln(1+t))^2=\frac{(\ln(1-t)+\ln(1+t))^4+(\ln(1-t)-\ln(1+t))^4-2(\ln(1-t))^4-2(\ln(1+t))^4}{12}$$

$$\ln^2(1-t)\ln^2(1+t)=\frac{(\ln(1-t)+\ln(1+t))^4+(\ln(1-t)-\ln(1+t))^4-2\ln^4(1-t)-2\ln^4(1+t)}{12}$$

$$\ln^2(1-t)\ln^2(1+t)=\frac{(\ln(1-t)+\ln(1+t))^4}{12}+\frac{(\ln(1-t)-\ln(1+t))^4}{12}-\frac{\ln^4(1-t)}{6}-\frac{\ln^4(1+t)}{6}$$

$$I=\int_{0}^1 \ln^2(1-t)\ln^2(1+t)\,dt$$

The above integral becomes,

$$I=\int_{0}^1 \frac{(\ln(1-t)+\ln(1+t))^4}{12}+\frac{(\ln(1-t)-\ln(1+t))^4}{12}-\frac{\ln^4(1-t)}{6}-\frac{\ln^4(1+t)}{6}\,dt$$

$$I=\frac{1}{12}I_1+\frac{1}{12}I_2-\frac{1}{6}I_3-\frac{1}{6}I_4\tag1$$

Where,

$$I_1=\int_{0}^1 (\ln(1-t)+\ln(1+t))^4\,dt=\int_{0}^1 \ln^4(1-t^2)\,dt\tag2$$ $$I_2=\int_{0}^1 (\ln(1-t)-\ln(1+t))^4\,dt=\int_{0}^1 \ln^4\left(\frac{1-t}{1+t}\right)\,dt\tag3$$ $$I_3=\int_{0}^1 \ln^4(1-t)\,dt\tag4$$ $$I_4=\int_{0}^1 \ln^4(1+t)\,dt\tag5$$

For $(4)$, I have found this below generalization, $$\int_{0}^1\ln^n(1-x)dx=(-1)^n n!$$

Is there any text/post with the generalisation for this?

$$I=\int_{0}^1 \ln^n(1-x)\ln^n(1+x)\,dx$$


Edit 1 :

$$I_1=\int_{0}^1 \ln^4(1-t^2)\,dt$$

$t^2=x\implies dt=\frac{1}{2}x^{-\frac{1}{2}}\,dx$

$$I_1=\frac{1}{2}\int_{0}^1 x^{-\frac{1}{2}}\ln^4(1-x)\,dx$$

This can be rewritten as $(x\to t)$,

$$I_1=\frac{1}{2}\int_{0}^1 (1-t)^{-\frac{1}{2}}\ln^4(t)\,dt$$

Inspired from the answers to one of my old question,

Considering the fourth derivative,

$$I_1=\frac{1}{2}\int_0^1 (1-t)^{-\frac{1}{2}}t^n\,dt=\frac{1}{2}\beta\left(n+1,\frac{1}{2}\right)$$

$$\frac{\partial^4{I_1}}{\partial n^4}=\frac{1}{2}\int_{0}^1 (1-t)^{-\frac{1}{2}}\ln^4(t)t^n\,dt$$

Put $n=0$,

$$\frac{\partial^4{I_1}}{\partial n^4}=\int_{0}^1 \ln^4(1-t^2)\,dt=\frac{1}{2}\lim_{n\to 0}\frac{\partial^4}{\partial n^4}\beta\left(n+1,\frac{1}{2}\right)$$

Now took some help of WA to compute this fourth derivative,

$$\int_{0}^1 \ln^4(1-t^2)\,dt=\frac{1}{2}\lim_{n\to 0}\frac{\partial^4}{\partial n^4}\beta\left(n+1,\frac{1}{2}\right)$$

$$ \boxed{I_1 = -96 (\zeta(3) - 4) + \ln(4) \Big( 48 (\zeta(3) - 4) + \ln(4) \big( 48 + (\ln(4) - 8)\ln(4) \big) \Big) - \frac{3 \pi^4}{5}-2 \pi^2 \big( 8 + (\ln(4) - 4)\ln(4) \big)} $$

Taken from here


Edit 2 :

From @Claude Leibovici's comment,

$$\int_{0}^{1} \ln^n(1+t) \, dt = (-1)^n (\Gamma(n+1, -\log(2)) - n \Gamma(n))$$

Put $n=4$,

$$\boxed{I_4= \Gamma(5, -\log(2)) - 4 \Gamma(4)}$$


Edit 3 :

Put $n=4$ in the above found generalization,

$$\boxed{I_3=24}$$


Edit 4 : Regarding the below integral,

$$I_2=\int_{0}^1 (\ln(1-t)-\ln(1+t))^4\,dt=\int_{0}^1 \ln^4\left(\frac{1-t}{1+t}\right)\,dt\tag3$$

I put $\frac{1-t}{1+t}=t$

$$I_2=2\int_{0}^1\frac{\ln^4(t)}{(1+t)^2}\,dt$$

Here, I used the series expansion of $\frac{1}{(1+t)^2}$ and solved to get, $$\boxed{I_2=42\zeta(4)=\frac{7}{15}\pi^4}$$


Edit 5 :

Using the other integral representation of the Beta function,

$$\int_{-1}^1(1-t)^{a-1}(1+t)^{b-1}\,dt=2^{a+b-1}\beta(a,b)$$

Double Derivative with respect to $b$ then Double Derivative with respect to $a$

$$2\int_{-1}^1(1-t)^{a-1}(1+t)^{b-1}\ln^2(1+t)\ln^2(1-t)\,dt=\frac{\partial^2}{\partial a^2}\left(\frac{\partial^2}{\partial b^2}\left(2^{a+b}\beta(a,b)\right)\right)$$

\begin{aligned} &= \psi^{(0)}(a + b)^2 + \psi^{(0)}(b) (\ln(4) - 2 \psi^{(0)}(a + b)) - \ln(4) \psi^{(0)}(a + b) - \psi^{(1)}(a + b) \\ &\quad + \psi^{(0)}(b)^2 + \psi^{(1)}(b) + \ln^2(2) \left( \ln^2 2 \cdot 2^{a+b} \cdot B(a, b) \right) \\ &\quad + 2^{a+b} \left[ \left( \psi^{(0)}(a) - \psi^{(0)}(a + b) \right)^2 B(a, b) + \left( \psi^{(1)}(a) - \psi^{(1)}(a + b) \right) B(a, b) \right] \\ &\quad + \ln(2) \cdot 2^{a+b+1} \left( \psi^{(0)}(a) - \psi^{(0)}(a + b) \right) B(a, b) \\ &\quad + 2 \left[ -2 \psi^{(0)}(b) \psi^{(1)}(a + b) + 2 \psi^{(0)}(a + b) \psi^{(1)}(a + b) - \psi^{(2)}(a + b) \right] \\ &\quad - \ln(4) \psi^{(1)}(a + b) \left( \ln(2) \cdot 2^{a+b} \cdot B(a, b) + 2^{a+b} (\psi^{(0)}(a) - \psi^{(0)}(a + b)) B(a, b) \right) \\ &\quad + \left( 2^{a+b} \cdot B(a, b) \right) \left[ 2 \psi^{(1)}(a + b)^2 - 2 \psi^{(0)}(b) \psi^{(2)}(a + b) + 2 \psi^{(0)}(a + b) \psi^{(2)}(a + b) \right] \\ &\quad - \ln(4) \psi^{(2)}(a + b)- \psi^{(3)}(a + b) \end{aligned}

Now putting $a=b=1$ and with help of this and this,

Using the fact that the integrand is even,

$$\int_{0}^1\ln^2(1-t)\ln^2(1+t)\,dt= 24 - 8\zeta(2) - 8\zeta(3) - \zeta(4) + 8\zeta(2) \ln(2) - 4\ln^2(2) \zeta(2) + 8\ln(2) \zeta(3) - 24\ln(2) + 12\ln^2(2) - 4\ln^3(2) + \ln^4(2)$$

Numerical check - here

Perhaps the generalization is as follows,

$$\int_{0}^1\ln^n(1+t)\ln^n(1-t)\,dt=\frac{1}{4}\lim_{(a,b)\to (1,1)}\frac{\partial^n}{\partial a^n}\left(\frac{\partial^n}{\partial b^n}\left(2^{a+b}\beta(a,b)\right)\right)$$

Now the question, is there any closed form available for that above expression?

Amrut Ayan
  • 8,887
  • 2
    $$I=-8 (\zeta (3)-3)+\log (2) (8 \zeta (3)-24+\log (2) (12+(\log (2)-4) \log (2)))-\frac{\pi ^4}{90}-\frac{1}{3} 2 \pi ^2 \left(2+\log ^2(2)-\log (4)\right)\approx 0.7962053215$$

    @AmrutAyan Your result evaluates to $0.334535$.

    – gpmath Nov 23 '24 at 17:41
  • @gpmath thank you for that check, I have removed the supposed closed form – Amrut Ayan Nov 23 '24 at 18:01
  • The similar $\frac{d^n}{da^n} B(a,b)$ has a hypergeometric form – Тyma Gaidash Nov 24 '24 at 13:40
  • 2
    It took a while to get to the bottom. Which is exactly the question? Let us denote by $J(n)$ the integral$$J(n)=\int_{0}^1 \log^n(1-x)\log^n(1+x),dx$$ for a natural number $n$. Relatively at the top we see the formula for $J(2)$, and there is a first question: "How do I proceed with this integral?" The attempt joins $J(/2)$ with four pieces, $I_1,I_2,I_3,I_4$, and as it stays, all of them have been computed. There is also a formula for $J(2)$ with an explicit check. The final question asks for a general closed formula for $J(n)$. I don't think there is any. What is in fact of interest? – dan_fulea Nov 24 '24 at 16:46
  • @dan_fulea let me rephrase this question, i kept adding in my work for $J(2)$ , thanks for pointing this ambiguity, I am currently looking for $J(n)$'s closed form, if it can be represented in terms of multiple zeta function form or any other combination of special functions – Amrut Ayan Nov 24 '24 at 16:58
  • Yes, $J(n)$ is a sum of (level two chromatic) multiple zeta values of depth $2n$. For instance, for $n=2$, denoting by $B$ the differential $dx/((+1)-x)$, and by $C$ the other one, $dx/((-1)-x)$, $(\pm 1)$ being the roots of unity corresponding to the level, we can write $J(2)$ up to a constant as $$\int_0^1\left(\int_0^x B^2\right)\left(\int_0^x C^2\right)$$(iterated integrals are involved) and then the shuffle product $B^2 ш C^2$ appears, there are six=$\binom 42$ pieces, each one should be a $\zeta(?,?,?,?)$ where the question marks are each $\pm 1$. – dan_fulea Nov 24 '24 at 17:03
  • The general form with limits and Beta function has already been presented in (Almost) Impossible Integrals, Sums, and Series ($2019$), page $77$. – user97357329 Nov 27 '24 at 10:34
  • @user97357329 thank you so much, i too tried searching through that book but could not find it then, my following question was can the nth derivative be further generalized in terms of different special functions, say from here this - https://functions.wolfram.com/GammaBetaErf/Beta/20/02/01/ is again differentiated n times... – Amrut Ayan Nov 27 '24 at 10:40
  • For the generalization, the fraction should be $\frac{1}{4}$, instead of $\frac{1}{2}$. The generalization is derived by taking $\frac{1}{2}$ of the partials of $2^{a+b-1} B(a,b)$. – Maxime Jaccon Dec 29 '24 at 19:31
  • @MaximeJaccon thank you, its edited now – Amrut Ayan Dec 30 '24 at 05:20

3 Answers3

5

You also have $$\int_{0}^1\ln^n(1+x)dx=(-1)^n (\Gamma (n+1,-\log (2))-n \Gamma (n))$$

Keeping your notations and using Mathematica $$I_1=-96 (\zeta (3)-4)+\log (4) (48 (\zeta (3)-4)+\log (4) (48+(\log (4)-8) \log (4)))-$$ $$\frac{3\pi ^4}{5}-2 \pi ^2 (8+(\log (4)-4) \log (4))$$

$$I_2=\frac{7 \pi ^4}{15}\qquad \qquad I_3=24$$

$$I_4=24+(\log (2) (12+(\log (2)-4) \log(2))-24) \log (4)$$

As a total, with $\color{red}{L=\log(2)}$ $$I=\left(24-8 \zeta (3)-\frac{4 \pi^2}{3}-\frac{\pi ^4}{90}\right)+ \left(8 \zeta (3)-24+\frac{4 \pi^2}{3}\right)L+\left(12-\frac{2 \pi^2}{3}\right) L^2-4L^3+L^4$$ which is the same as @AmrutAyan's result

4

A physicist's approach:

$$I(n,m)=\int_{0}^1\ln^n(1+t)\ln^m(1-t)\,dt$$

We use an approximation

$$\ln(1+t)\approx \frac{\ln 2}{3}t(4-t)$$ $$0\leqslant t \leqslant 1$$

Thus $$I(n,m)\approx \left ( \frac{\ln 2}{3} \right )^n\int_{0}^1t^n(4-t)^n\ln^m(1-t)\,dt$$

The calculation of this integral is elementary and I will not bring it out here, but I will write the result:

$$I(n,m)\approx \left ( \frac{\ln 2}{3} \right )^n(-1)^{n+m}m! \sum_{k=0}^{n}\binom{n}{k}4^kf(n,k)$$ where

$$f(n,k)=\sum_{i=0}^{2n-k}\binom{2n-k}{i}\frac{(-1)^i}{(2n+1-k-i)^{m+1}}$$

Let's look at some numerical examples

$n=2,m=2$

$I_{exact}=0.796205$

$I_{approx}=\frac{404807}{243000}\ln^22=0.800373$

$n=2,m=3$

$I_{exact}=-2.6305$

$I_{approx}=-\frac{26705809}{4860000}\ln^22=-2.6401$

A slightly more extreme case:

$n=7,m=1$

$I_{exact}=-0.030831$

$I_{approx}=-\frac{2077023165589}{5071470604200}\ln^72=-0.031484$

Martin Gales
  • 7,927
0
Integrate[Log[1 + t]^2*Log[1 - t]^2, {t, 0, 1}]

Mathematica shows the result is

$$ \int_0^1 \log ^2(t+1) \log ^2(1-t) \, dt = -8 \zeta (3)+8 \zeta (3) \log (2)-\frac{4 \pi ^2}{3}-\frac{\pi ^4}{90}+24+\log ^4(2)-4 \log ^3(2)-\frac{2}{3} \pi ^2 \log ^2(2)+12 \log ^2(2)-24 \log (2)+\frac{2}{3} \pi ^2 \log (4) $$