Let $\rho=\dfrac{2\sqrt r}{1+r}$. By $(1)$ symmetry and $(2)$ substitution of $u\to\dfrac{\pi-u}2$, we have
$$\begin{align*}
I(r) &= \int_0^{2\pi} \frac{\cos u - r}{\left(1+r^2-2r\cos u\right)^{3/2}} \, du \\
&\stackrel{(1)}= \frac2{\left(1+r^2\right)^{3/2}} \int_0^\pi \frac{\cos u-r}{\left(1-\frac{\rho^2}2\cos u\right)^{3/2}} \, du \\
&\stackrel{(2)}= -\frac4{\left(1+r^2\right)^{3/2}} \int_0^\tfrac\pi2 \frac{\cos(2u)+r}{\left(1+\frac{\rho^2}2\cos(2u)\right)^{3/2}} \, du \\
&= \frac8{(1+r)^3}\int_0^\tfrac\pi2\frac{\sin^2u}{\left(1-\rho^2\sin^2u\right)^{3/2}} \, du-\frac4{(1+r)^2}\int_0^\tfrac\pi2\frac{du}{\left(1-\rho^2\sin^2u\right)^{3/2}} \\
&\!\!\!\stackrel{(3),(4)}= \frac8{(1-r)^2(1+r)} \underbrace{\int_0^\tfrac\pi2 \frac{1-\sin^2u}{\sqrt{1-\rho^2\sin^2u}} \, du}_{I_1} -\frac4{(1-r)^2}\underbrace{\int_0^\tfrac\pi2\sqrt{1-\rho^2\sin^2u}\,du}_{I_2}
\end{align*}$$
The reductions to $I_1$ and $I_2$ respectively follow from $(3)$ and $(4)$. $I_1$ can be further broken down into a linear combination of $E(\rho)$ and $K(\rho)$.
We ultimately find that
$$I(r)=\frac2{r(1-r)}E\left(\frac{2\sqrt r}{1+r}\right)-\frac2{r(1+r)}K\left(\frac{2\sqrt r}{1+r}\right)$$
or equivalently, applying identities listed here,
$$\begin{align*}
K(k)&\stackrel{(127)}=\frac1{1+k}K\left(\frac{2\sqrt k}{1+k}\right) \\
E(k)&\stackrel{(139)}=\left(1+\sqrt{1-k^2}\right)E\left(\frac{1-\sqrt{1-k^2}}{1+\sqrt{1-k^2}}\right)-\sqrt{1-k^2}K(k)
\end{align*}$$
$$\implies I(r) = \frac4{r\left(1-r^2\right)} E(r) - \frac4r K(r)$$