Let $f : \mathbb{R} \to \mathbb{C}$ be defined by
$$f(t) = \exp(I t^2/2),$$
where $I$ is the imaginary unit. Then $f$ is the first derivative of the Euler spiral.
Problem
Provide a non-recursive formula for the n:th derivative $f^{(n)}(t)$ where $n \in \mathbb{N}$.
Instances
Sagemath will happily compute an arbitrary derivative. Here are some of the first, where I have divided away the common factor $f(t)$:
$$ \begin{aligned} f^{(1)}(t) / f(t) & = I*t \\ f^{(2)}(t) / f(t) & = -t^2 + I \\ f^{(3)}(t) / f(t) & = -I*t^3 - 3*t \\ f^{(4)}(t) / f(t) & = t^4 - 6*I*t^2 - 3 \\ f^{(5)}(t) / f(t) & = I*t^5 + 10*t^3 - 15*I*t \\ f^{(6)}(t) / f(t) & = -t^6 + 15*I*t^4 + 45*t^2 - 15*I \\ f^{(7)}(t) / f(t) & = -I*t^7 - 21*t^5 + 105*I*t^3 + 105*t \\ f^{(8)}(t) / f(t) & = t^8 - 28*I*t^6 - 210*t^4 + 420*I*t^2 + 105 \\ \end{aligned} $$
These were computed with the following Sagemath script:
t, k = var('t', 'k')
df = exp(I * (1/2) * t^2)
with assuming(t, 'real'):
print('\\begin{aligned}')
for n in range(1, 9):
print(f'f^{{({n})}}(t) / f(t) & = {(diff(df, t, n) / df).simplify_full()} \\\\')
print('\\end{aligned}')