Let $Q_1 = \left( \frac{a, b}{\mathbb{Q}} \right)$ and $Q_2 = \left( \frac{a, c}{\mathbb{Q}} \right)$ be quaternion algebras over $\mathbb{Q}$. Prove that $Q_1 \otimes_{\mathbb{Q}} Q_2$ is isomorphic to $\mathrm{M}_4(\mathbb{Q})$ or to $\mathrm{M}_2(Q_3)$, where $Q_3$ is a division algebra.
Definitions:
$(1)$ A central simple algebra (CSA) over a field K is a finite-dimensional associative K-algebra A which is simple, and for which the center is exactly K.
$(2)$ If $a$ and $b$ are nonzero elements of a field $K$ with characteristic different from 2, the quaternion algebra $\left( \frac{a, b}{K} \right)$ is defined as the $K$-algebra generated by elements $i$ and $j$ that satisfy the identities $i^2 = a$, $j^2 = b$, and $ij = -ji$.
Ideas:
$(1)$ $\left( \frac{a, b}{K} \right)$ is a central simple algebra.
$(2)$ The tensor product of central simple algebras is a central simple algebra.
$(3)$ The algebras $Q_1$ and $Q_2$ contain $\mathbb{Q}(\sqrt{a})$ as a subfield.
$(4)$ The function $\lambda: \left( \frac{a, m}{\mathbb{Q}} \right) \to \mathrm{M}_2(\mathbb{Q}(\sqrt{a}))$ given by:
$i, j \mapsto \begin{pmatrix} \sqrt{a} & 0 \\ 0 & -\sqrt{a} \end{pmatrix}, \begin{pmatrix} 0 & m \\ 1 & 0 \end{pmatrix}$
extends uniquely to an injective $\mathbb{Q}$-algebra homomorphism.
$(5)$ If $b = c$, I conjecture that $Q_1 \otimes_{\mathbb{Q}} Q_2$ is isomorphic to $\mathrm{M}_4(\mathbb{Q})$. However, I am unsure how to rigorously prove this.
$(6)$ If $b \neq c$, I conjecture that $Q_1 \otimes_{\mathbb{Q}} Q_2$ is isomorphic to $\mathrm{M}_2(Q_3)$, but i do not know how to describe $Q_3$, nor do I know how to establish this isomorphism.