9

I found the following 9 identities in OEIS (A000045 Section Formula):

  1. \begin{align} F_{nm} = \sum_{k=0}^{m} \binom{m}{k} F_{n-1}^{k} F_{n}^{m-k} F_{m-k}. \end{align}

  2. \begin{align} F_{2^{n}} = \prod_{i=0}^{n-2} a_{i}, \hspace{3mm} a_{i}= a_{i-1}^{2} -2 \end{align}

  3. \begin{align} F_{n+1} = 2^{n} \sqrt{\prod_{k=1}^{n} \cos^{2} \frac{k \pi}{n+1} + \frac{1}{4} } \end{align}

  4. \begin{align}F_{n} = F_{n+2}-1 + F_{n+1}^{4} + 2(F_{n+1}^{3} F_{n+2}) - (F_{n+1}F_{n+2})^{2} - 2F_{n+1}F_{n-2}^{3} + F_{n+2}^{4}. \end{align}

  5. \begin{align} \frac{F_{n+3}^{2} - F_{n+1}^{2}}{F_{n+2}} = F_{n+3} + F_{n+1}. \end{align}

  6. \begin{align} F_{2n} = F_{n+2}^{2} - F_{n+1}^{2} - 2F_{n}^{2}. \end{align}

  7. \begin{align} F_{n} = \frac{F_{2n+k+1} - F_{n+1} F_{n+k+1}}{F_{n+k}}, \hspace{3mm} k\geq 0. \end{align}

  8. \begin{align} F_{n+10} = 11F_{n+5} + F_{n}\end{align}

  9. \begin{align} F_{n} = 4F_{n-3} + F_{n-6}, \hspace{3mm} n\geq 6\end{align}

I tried to find papers/books in which these identities are proved, but without success.

Any help would be appreciated.

  • 1
  • 2
    For the second one, you need a base case for the recursion. $a_0 = 3$ does it. The sequence of $a_i$, namely $3, 7, 47, 2207, \ldots$ is A001566. That references a paper: A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (https://www.fq.math.ca/Scanned/11-4/aho-a.pdf). I can't quite work out the proof of the second identity from that paper but it may be of interest. – Michael Lugo Nov 20 '24 at 15:41
  • 1
    Fibonacci and Lucas Numbers, and the Golden Section, Steven Vajda, Dover, 1986, and Fibonacci and Golden Ratio Formulae, R. Knott, https://r-knott.surrey.ac.uk/Fibonacci/fibFormulae.html. – Cye Waldman Nov 20 '24 at 21:27
  • 3
    Can you say what the goal of tracking down the references is? If it's verification you want, then there are easier approaches; for example, checking identities 4-9 is a matter of substituting the formula and simplifying. (It is not always the easiest method, but it's the one that requires the least creativity.) – Misha Lavrov Dec 03 '24 at 16:19
  • To give some context, which "papers/books" did you read? – Somos Dec 03 '24 at 20:17
  • @MishaLavrov I am looking for references for proofs of these identities because I want to include proofs of them in my lecture next week. I know there are non-creative ways of proving them, but I am interested if there are any other ways. Also, I am sure I won't be able to prove first four identities by myself. – mathbook Dec 06 '24 at 18:05
  • @Somos I searched through Fobonacci quarterly and on google schoolar (for example, I searched Fibonacci numbers cosine identity). – mathbook Dec 06 '24 at 18:06
  • 5 and 6 are both related to the fact that $F_{2n} = F_nL_n$ and the answer I gave here: https://math.stackexchange.com/a/5007877/1288180 – HG11 Dec 07 '24 at 00:04

2 Answers2

7
  1. \begin{align} F_{nm} = \sum_{k=0}^{m} \binom{m}{k} F_{n-1}^{k} F_{n}^{m-k} F_{m-k}. \end{align}

This paper proves that $$F_{kn+c}=\sum_{i=0}^{k}\binom kiF_{c-i}F_n^iF_{n+1}^{k-i}$$ You can set $c=k$ with $n\to n-1$.


  1. \begin{align} F_{2^{n}} = \prod_{i=0}^{n-2} a_{i}, \hspace{3mm} a_{i}= a_{i-1}^{2} -2 \end{align}

From $a_{i}= a_{i-1}^{2} -2$ with $a_0=F_{2^2}=3$, one can prove that $a_i=L_{2^{i+1}}$ where $L_j$ is Lucas numbers. (You can use the fact that $L_{2n}=L_n^2-2(-1)^n$.)

This paper proves in Lemma 2 that $$F_{2^{n}} = \prod_{i=0}^{n-2} L_{2^{i+1}}$$


  1. \begin{align} F_{n+1} = 2^{n} \sqrt{\prod_{k=1}^{n} \cos^{2} \frac{k \pi}{n+1} + \frac{1}{4} } \end{align}

This answer proves that $$F_n^2 = \prod_{k=1}^{n-1}\left(3 + 2\cos\left(\frac{2\pi k}{n}\right)\right)$$ You can use $\cos 2A=2\cos^2A-1$ with $n\to n+1$.


  1. \begin{align}F_{n} = F_{n+2}-1 + F_{n+1}^{4} + 2(F_{n+1}^{3} F_{n+2}) - (F_{n+1}F_{n+2})^{2} - 2F_{n+1}F_{n-2}^{3} + F_{n+2}^{4}. \end{align}

I think you have typos. It should be $$F_{n} = F_{n+2}-1 + F_{n+1}^{4} + 2(F_{n+1}^{3} F_{n+2}) - (F_{n+1}F_{n+2})^{2} - 2F_{n+1}F_{n\color{red}+2}^{3} + F_{n+2}^{4}\color{red}{-F_{n+1}}$$

Let $F_n=a,F_{n+1}=b$. Then, since $F_{n+2}=a+b$ and $\color{red}{b^2}=ab+a^2+(-1)^n$ (which is equivalent to $F_{n+1}F_{n-1}=F_n^2+(-1)^n$, and see here), we have $$\begin{align}RHS&=a^4+a-1+2a^3b \\&\qquad +\color{red}{b^2}( - a^2- 2 a b + \color{red}{b^2}) \\&=a^4+a-1+2a^3b \\&\qquad +(ab+a^2+(-1)^n)(-ab+(-1)^n) \\&=a+a^2(\underbrace{a^2+ a b + (-1)^n-\color{red}{b^2}}_{=0}) \\&=a\end{align}$$


  1. \begin{align} \frac{F_{n+3}^{2} - F_{n+1}^{2}}{F_{n+2}} = F_{n+3} + F_{n+1}. \end{align}

We have $$LHS=\frac{(F_{n+3}+F_{n+1})(F_{n+3}-F_{n+1})}{F_{n+2}}=RHS$$ since $F_{n+3}-F_{n+1}=F_{n+2}$.


  1. \begin{align} F_{2n} = F_{n+2}^{2} - F_{n+1}^{2} - 2F_{n}^{2}. \end{align}

We have $$\begin{align}RHS&=(F_{n+1}+F_n)^2-F_{n+1}^2-2F_n^2 \\&=2F_nF_{n+1}-F_n^2 \\&=F_n(F_{n+1}+F_{n+1}-F_n) \\&=F_n(F_{n+1}+F_{n-1})\end{align}$$

Now, see here.


  1. \begin{align} F_{n} = \frac{F_{2n+k+1} - F_{n+1} F_{n+k+1}}{F_{n+k}}, \hspace{3mm} k\geq 0. \end{align}

It is sufficient to prove $$F_{n+m} = F_nF_{m+1} + F_{n-1}F_m$$ (see for example here)


  1. \begin{align} F_{n+10} = 11F_{n+5} + F_{n}\end{align}

Using $F_N=F_{N-1}+F_{N-2}$, we have $$\begin{align}F_{n+10}&=F_{n+9}+F_{n+8} \\&=(F_{n+8}+F_{n+7})+(F_{n+7}+F_{n+6}) \\&=F_{n+8}+2F_{n+7}+F_{n+6} \\&=(F_{n+7}+F_{n+6})+2(F_{n+6}+F_{n+5}) \\&\qquad +(F_{n+5}+F_{n+4}) \\&=F_{n+7}+3F_{n+6}+3F_{n+5}+F_{n+4} \\&=(F_{n+6}+F_{n+5})+3(F_{n+5}+F_{n+4}) \\&\qquad +3F_{n+5}+(F_{n+3}+F_{n+2}) \\&=F_{n+6}+7F_{n+5}+3F_{n+4}+F_{n+3}+F_{n+2} \\&=(F_{n+5}+F_{n+4})+7F_{n+5}+3F_{n+4} \\&\qquad +(F_{n+5}-F_{n+4})+(F_{n+1}+F_{n}) \\&=9F_{n+5}+3F_{n+4}+F_{n+1}+F_n \\&=9F_{n+5}+3F_{n+4}+F_{n+3}-F_{n+2}+F_n \\&=9F_{n+5}+3F_{n+4}+(F_{n+5}-F_{n+4}) \\&\qquad -(F_{n+4}-F_{n+3})+F_n \\&=10F_{n+5}+\underbrace{F_{n+4}+F_{n+3}}_{=F_{n+5}}+F_n \\&=11F_{n+5}+F_n\end{align}$$


  1. \begin{align} F_{n} = 4F_{n-3} + F_{n-6}, \hspace{3mm} n\geq 6\end{align}

Using $F_N=F_{N-1}+F_{N-2}$, we have $$\begin{align}F_n&=F_{n-1}+F_{n-2} \\&=(F_{n-2}+F_{n-3})+(F_{n-3}+F_{n-4}) \\&=F_{n-2}+2F_{n-3}+F_{n-4} \\&=(F_{n-3}+F_{n-4})+2F_{n-3}+(F_{n-5}+F_{n-6}) \\&=3F_{n-3}+\underbrace{F_{n-4}+F_{n-5}}_{=F_{n-3}}+F_{n-6} \\&=4F_{n-3}+F_{n-6}\end{align}$$

mathlove
  • 151,597
0

I recommend using the following two books:

Fibonacci and Lucas Numbers with Applications, Volume 1 (Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts)

Fibonacci and Lucas Numbers with Applications, Volume 2 (Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts)

Math Admiral
  • 1,687