I'm trying to understand why $\mathbb{H}\otimes_\mathbb{R}\mathbb{C}\cong\mathrm{M}_2(\mathbb{C})$. I've seen several posts (Tensor product of the spaces of quaternions and complex numbers, Tensor product between quaternions and complex numbers., Why is $\mathbb{H} \otimes \mathbb{C} \cong \text{End}_{\mathbb{C}} (\mathbb{H})$) which give explicit isomorphisms but I fail to see how $\dim_{\mathbb{C}}(\mathbb{H}\otimes_{\mathbb{R}}\mathbb{C})=\dim_{\mathbb{C}}\mathrm{M}_2(\mathbb{C})=4$.
In S. Pierce's textbook Associative Algebras p. 169, there is a proposition that, when applied to this case, asserts that you can define a scalar multiplication on $\mathbb{H}\otimes_\mathbb{R}\mathbb{C}$ but with the scalars coming from $\mathbb{C}$ as follows: \begin{align*} (\forall\gamma\in\mathbb{C})\ \ \ \gamma\bigl((a_1+a_2\mathrm{i}+a_3\mathrm{j}+a_4\mathrm{k})\otimes(b_1+b_2\mathrm{i})\bigr)&=(1\otimes\gamma)\bigl((a_1+a_2\mathrm{i}+a_3\mathrm{j}+a_4\mathrm{k})\otimes(b_1+b_2\mathrm{i})\bigr)\\ &=\bigl((a_1+a_2\mathrm{i}+a_3\mathrm{j}+a_4\mathrm{k})\otimes\gamma(b_1+b_2\mathrm{i})\bigr)\\ &=\bigl((a_1+a_2\mathrm{i}+a_3\mathrm{j}+a_4\mathrm{k})\otimes(b_1+b_2\mathrm{i})\gamma\bigr)\\ &=\bigl((a_1+a_2\mathrm{i}+a_3\mathrm{j}+a_4\mathrm{k})\otimes(b_1+b_2\mathrm{i})\bigr)(1\otimes\gamma)\\ &=\bigl((a_1+a_2\mathrm{i}+a_3\mathrm{j}+a_4\mathrm{k})\otimes(b_1+b_2\mathrm{i})\bigr)\gamma \end{align*}
so the scalar multiplication is commutative which is what we want. With this, I believe in $\mathbb{H}\otimes_\mathbb{R}\mathbb{C}$ being a $\mathbb{C}$-vector space since it was already a real vector space and now it has scalar multiplication from $\mathbb{C}$.
From my understanding of the tensor product, $\mathbb{H}\otimes_\mathbb{R}\mathbb{C}$ has
\begin{align*} \left\{\begin{matrix} 1\otimes1, && \mathrm{i}\otimes1, && \mathrm{j}\otimes1, && \mathrm{k}\otimes1,\\ 1\otimes\mathrm{i}, && \mathrm{i}\otimes\mathrm{i}, && \mathrm{j}\otimes\mathrm{i}, && \mathrm{k}\otimes\mathrm{i} \end{matrix}\right\} \end{align*}
as an $\mathbb{R}$-basis. What is the $\mathbb{C}$-basis? Would it be
\begin{align*} \left\{\begin{matrix} 1\otimes1, && \mathrm{i}\otimes1, && \mathrm{j}\otimes1, && \mathrm{k}\otimes1 \end{matrix}\right\} \end{align*}
because the new scalar multiplication defined can make the right-hand side of the tensor be any complex number? But then why isn't
\begin{align*} \left\{\begin{matrix} 1\otimes1, && \mathrm{j}\otimes1 \end{matrix}\right\} \end{align*}
a $\mathbb{C}$-basis since a quaternion $a_1+a_2\mathrm{i}+a_3\mathrm{j}+a_4\mathrm{k}$ can be represented as $(a_1+a_2\mathrm{i})+(a_3+a_4\mathrm{i})\mathrm{j}$ given $\mathrm{ij}=\mathrm{k}$?
Edit: I think I got it. The last basis doesn't work because the scalar multiplication we defined only affects the right-hand side of a pure tensor, not the left-hand side which is where the quaternions live. Is this correct?