Let $k$ be a field.
If $I$ is a finite index set, then the global dimension of the ring $\prod_I k$ is zero because $\prod_I k$ is a semisimple ring.
Now, the question arises: When $I$ is an infinite index set, what is the global dimension of the ring $\prod_I k$?
For instance, when $ I = $ $\aleph_1 $, what is $ \mathrm{gl. dim} \prod_{\aleph_1} k $?