Claim
$$ \lim_{n \to \infty} \left( \pi n \csc\left(\frac{\pi}{n}\right) - n^2 \right) = \sum_{k=1}^{\infty} \frac{1}{k^2} $$
Proof
Euler's infinite product $$ \sin(x) = x \prod_{k=1}^{\infty} \left(1 - \frac{x^2}{k^2 \pi^2}\right) $$
Set $x = \frac{\pi}{n}$ $$ \sin\left(\frac{\pi}{n}\right) = \frac{\pi}{n} \prod_{k=1}^{\infty} \left(1 - \frac{1}{k^2 n^2}\right) $$
Note
$$ \csc\left(\frac{\pi}{n}\right) = \frac{1}{\sin\left(\frac{\pi}{n}\right)} = \frac{n}{\pi} \prod_{k=1}^{\infty} \left(1 - \frac{1}{k^2 n^2}\right)^{-1} $$
Substituting $$ \begin{align*} \pi n \csc\left(\frac{\pi}{n}\right) - n^2 &= \pi n \left( \frac{n}{\pi} \prod_{k=1}^{\infty} \left(1 - \frac{1}{k^2 n^2}\right)^{-1} \right) - n^2 \\ &= n^2 \prod_{k=1}^{\infty} \left(1 - \frac{1}{k^2 n^2}\right)^{-1} - n^2 \\ &= n^2 \left( \prod_{k=1}^{\infty} \left(1 - \frac{1}{k^2 n^2}\right)^{-1} - 1 \right) \tag{*}\\ &\approx n^2 \left(1 + \sum_{k=1}^{\infty} \frac{1}{k^2 n^2} - 1 \right) \\ &\approx n^2 \sum_{k=1}^{\infty} \frac{1}{k^2 n^2}\\ &\approx \sum_{k=1}^{\infty} \frac{1}{k^2} \end{align*} $$
Taking the limits
$$ \lim_{n \to \infty} \left( \pi n \csc\left(\frac{\pi}{n}\right) - n^2 \right) = \lim_{n \to \infty} \sum_{k=1}^{\infty} \frac{1}{k^2} = \sum_{k=1}^{\infty} \frac{1}{k^2} \quad \blacksquare $$
Question
I applied the following approximations to the proof at $\left(*\right)$
$$ \overbrace{\prod_{k=1}^{\infty} \left(1 - \frac{1}{k^2 n^2}\right)^{-1} \approx \prod_{k=1}^{\infty} \left(1 + \frac{1}{k^2 n^2}\right)}^{(1 - a)^{-1} \approx 1 + a} \approx \overbrace{1 + \sum_{k=1}^{\infty} \frac{1}{k^2 n^2}}^{\prod_{k=1}^{\infty} (1 + a_k) \approx 1 + \sum_{k=1}^{\infty} a_k} $$
but I'm curious if those are the correct approximations to apply or do they invalidate the proof?