Theorem (Sobolev embedding) Let $1<p\leq q<\infty,\, s\geq 0$ and $\Omega$ an open set of $\mathbb{R}^n$. Then if $s<np$, then for any $q\in [p, \frac{np}{n-sp}]$, \begin{align} H^{s,p}(\Omega)\hookrightarrow L^q(\Omega) \end{align}
Question. Is the embedding also valid if we change $\Omega$ to $\overline{\Omega}$?