I know that $a-b$ can divide $a^n-b^n$ and I have already seen other proofs in a similar post here. But, I want to know if the following way of proving it is correct or not.
Say we have a G.P. : $1, \frac{b}{a},\frac{b^2}{a^2},\frac{b^3}{a^3} , \cdot \cdot \cdot , \frac{b^{n-1}}{a^{n-1}}$
Where, $a$ and $b$ are integers and $a\neq0$
If we add all $n$ terms, we get: $1+\frac{b}{a}+\frac{b^2}{a^2}+\frac{b^3}{a^3} + \cdot \cdot \cdot + \frac{b^{n-1}}{a^{n-1}} = \frac{1\cdot\left ( 1 - \left ( \frac{b}{a} \right )^n \right )}{ \left ( 1 - \left ( \frac{b}{a} \right ) \right )}$
This can be rewritten as:$1+\frac{b}{a}+\frac{b^2}{a^2}+\frac{b^3}{a^3} + \cdot \cdot \cdot + \frac{b^{n-1}}{a^{n-1}} = \frac{a^{1-n}(a^n - b^n)}{(a - b)}$
And then after a few operations it becomes: $ a^{n-1} + a^{n-2}b + \cdot \cdot \cdot + b^{n-1} = \frac{(a^n - b^n)}{(a - b)}$
And because $a, b \in \mathbb{I}$, the L.H.S. is also an integer, which tells us that $a-b$ can divide $a^n-b^n$ regardless if $n$ is odd or even.
Is this way of proving it correct? Because, I find it rather simpler than other methods discussed here: Proof of $a^n+b^n$ divisible by $a+b$ when $n$ is odd