In Wikipedia about matrix norm, two induced matrix norms, $\|A\|_2=\sigma_{\operatorname{max}}\left(A\right)$ and $\|A\|_{1,2}=\underset{1\le j \le n}{\max}\|A_{\cdot,j}\|_2$, have been introduced.
Now I am interested in the equivalence of these two matrix norms. How could I get a tight bound when I prove the equivalence?
my attempt: $$ \|Ax\|_2^2=\sum_{i=1}^n\left(\sum_{j=1}^na_{ij}x_j\right)^2 $$ now apply the Cauchy inequality for each term $\sum_{j=1}^n a_{ij}x_j$ as follows: $$ \left(\sum_{j=1}^na_{ij}x_j\right)^2\le\left(\sum_{j=1}^na_{ij}^2\right)\left(\sum_{j=1}^nx_j^2\right). $$ Since $\|x\|_2=1$, we have: $$ \|Ax\|_2^2\le \sum_{i=1}^n\sum_{j=1}^na_{ij}^2 $$