Define the notation $\, u_n := \eta(n\tau) \,$ for the Dedekind $\eta$ function and $\, q := e^{2\pi i\tau}.$
The simplest identity of level $4$ and degree $24$ seems to be
$$ 0 = u_1^{16}u_4^8 + 16 u_1^8 u_4^{16} - u_2^{24}. $$
The simplest identity of level $8$ and degree $12$ seems to be
$$ 0 = u_1^4 u_2^2 u_4^2 u_8^4 + 4 u_2^4 u_8^8 - u_4^{12}. $$
What are possible proofs of this level $8$ and degree $23$ identity
$$ 0 = u_1^4 u_4^{19} + 2 u_1^2 u_2^7 u_4^{12} u_8^2 + u_2^{14} u_4^5 u_8^4 - 2 u_1^8 u_2^2 u_4^9 u_8^4 - 2 u_1^6 u_2^9 u_4^2 u_8^6 - 12 u_1^4 u_2^4 u_4^7 u_8^8 - 8 u_1^2 u_2^{11} u_8^{10}? $$
Here is the background for this identity. Given Ramanujan's theta function $\,f(a,b)\,$ define
$$ w_n := q^{(4-n)^2/16} f(-q^n, -q^{8-n}). $$
Notice that $\,w_n = w_{n+8} = -w_{-n}\,$ for all integer $n$.
Suppose we are given the identities
$$ w_2 = \frac{u_2u_8}{u_4},\; w_4 = \frac{u_4^2}{u_8},\; w_1w_3 = \frac{u_1u_8^2}{u_2},\; w_1 = u_1 u_8^3\sqrt{\frac{2u_1 u_2 u_4}{u_1^2 u_4^7 + u_2^7 u_8^2}}. $$
Then the identity
$$ 0 = -w_4^2 w_3^2 u_2 + w_4^2 w_1^2 u_2 + 4w_2^2 u_1 u_8^2 + u_1^5 $$
is equivalent to the degree $23$ identity.
By the way, the $\,w_n\,$ sequence is an elliptic divisibility sequence and also an $\,(\alpha,\beta)\,$ Somos-4 sequence where $\,\alpha=(w_2/w_1)^2,\,\beta=-w_3/w_1.$