Introducing
$$V(r,s,N) = \sum_{k=0}^N (-1)^k {r\choose k} {s\choose N-k}
= [z^N] (1+z)^s \sum_{k\ge 0} (-1)^k {r\choose k} z^k
\\ = [z^N] (1+z)^s (1-z)^r$$
we seek a closed form of
$$S(n,m_0,m_1) = \sum_{q=0}^n V(m_0,n-m_0,q) V(m_1,n-m_1,q)$$
where $n\ge 1$ and $0\le m_{0,1}\le n.$ We obtain
$$\sum_{q=0}^n V(m_0,n-m_0,n-q) V(m_1,n-m_1,n-q)
\\ = [w^n] (1+w)^{n-m_0} (1-w)^{m_0}
[z^n] (1+z)^{n-m_1} (1-z)^{m_1}
\sum_{q=0}^n w^q z^q.$$
Here we may extend the sum to infinity due to the coefficient
extractors:
$$[w^n] (1+w)^{n-m_0} (1-w)^{m_0}
[z^n] (1+z)^{n-m_1} (1-z)^{m_1} \frac{1}{1-wz}.$$
The contribution from $z$ is
$$-\frac{1}{w} \;\underset{z}{\mathrm{res}}\;
\frac{1}{z^{n+1}} (1+z)^{n-m_1} (1-z)^{m_1} \frac{1}{z-1/w}.$$
Here the residue at infinity is zero (just barely) and
residues sum to zero so we may evaluate using minus the
residue at $z=1/w$, getting
$$[w^{n+1}] (1+w)^{n-m_0} (1-w)^{m_0}
w^{n+1} \frac{(1+w)^{n-m_1}}{w^{n-m_1}}
\frac{(w-1)^{m_1}}{w^{m_1}}
\\ = (-1)^{m_1} [w^n] (1+w)^{2n-m_0-m_1} (1-w)^{m_0+m_1}.$$
This is
$$(-1)^{m_1} \;\underset{w}{\mathrm{res}}\;
\frac{1}{w^{n+1}} (1+w)^{2n-m_0-m_1} (1-w)^{m_0+m_1}.$$
Note there are no poles at $\pm 1$ due to the stated
boundary conditions. We evaluate using minus the
residue at infinity (residues again sum to zero):
$$(-1)^{m_1} \;\underset{w}{\mathrm{res}}\;
\frac{w^{n+1}}{w^2} (1+1/w)^{2n-m_0-m_1} (1-1/w)^{m_0+m_1}
\\ = (-1)^{m_1} \;\underset{w}{\mathrm{res}}\;
\frac{1}{w^{n+1}} (1+w)^{2n-m_0-m_1} (w-1)^{m_0+m_1}
\\ = (-1)^{m_0} \;\underset{w}{\mathrm{res}}\;
\frac{1}{w^{n+1}} (1+w)^{2n-m_0-m_1} (1-w)^{m_0+m_1}.$$
We thus have
$$S(n,m_0,m_1) = \frac{1}{2}
((-1)^{m_0}+(-1)^{m_1})
[w^n] (1+w)^{2n-m_0-m_1} (1-w)^{m_0+m_1}.$$
Here we clearly obtain a zero value when $\Delta^-$ is
odd which is half the claim. Otherwise we have in terms
of $\Delta^+$
$$(-1)^{m_0} \;\underset{w}{\mathrm{res}}\;
\frac{1}{w^{n+1}} (1+w)^{2n-\Delta^+} (1-w)^{\Delta^+}.$$
Now put $w/(1+w)=v$ so that $w=v/(1-v)$ and $dw = 1/(1-v)^2 \; dv$ to
get
$$(-1)^{m_0} \;\underset{v}{\mathrm{res}}\;
\frac{1}{v^{n+1}} \frac{1}{(1-v)^{n-1-\Delta^+}}
\frac{(1-2v)^{\Delta^+}}{(1-v)^{\Delta+}}
\frac{1}{(1-v)^2}
\\ = (-1)^{m_0} \;\underset{v}{\mathrm{res}}\;
\frac{1}{v^{n+1}} \frac{1}{(1-v)^{n+1}}
(1-2v)^{\Delta^+}.$$
Next put $v=(1-\sqrt{1-4u})/2$ so that $v(1-v)=u$ and
$dv = \frac{1}{\sqrt{1-4u}}\; du$ to get
$$(-1)^{m_0} \;\underset{u}{\mathrm{res}}\;
\frac{1}{u^{n+1}} \sqrt{1-4u}^{\Delta^+}
\frac{1}{\sqrt{1-4u}}
\\ = (-1)^{m_0} \;\underset{u}{\mathrm{res}}\;
\frac{1}{u^{n+1}} \sqrt{1-4u}^{\Delta^+ -1}
= (-1)^{m_0} \;\underset{u}{\mathrm{res}}\;
\frac{1}{u^{n+1}} (1-4u)^{\Delta^+/2 -1/2}
\\ = (-1)^{m_0} {\Delta^+/2 -1/2\choose n} (-1)^n 4^n.$$
This is an acceptable closed form but apparently OP ask
for additional manipulation, which is (use $\Delta^+/2
\le n$ as well as the fact that now $\Delta^+$ is even)
$$(-1)^{m_0} {\Delta^+/2 -1/2\choose \Delta^+/2}
(\Delta^+/2)! {-1/2\choose n-\Delta^+/2} (n-\Delta^+/2)!
\frac{1}{n!} (-1)^n 4^n
\\ = (-1)^{m_0+\Delta^+/2} {-1/2\choose \Delta^+/2}
(\Delta^+/2)! \frac{(-1)^{n-\Delta^+/2}}{4^{n-\Delta^+/2}}
{2n-\Delta^+\choose n-\Delta^+/2}
(n-\Delta^+/2)! \frac{1}{n!} (-1)^n 4^n
\\ = (-1)^{m_0} \frac{(-1)^{\Delta^+/2}}{4^{\Delta^+/2}}
{\Delta^+\choose \Delta^+/2}
(\Delta^+/2)! \frac{1}{4^{n-\Delta^+/2}}
\frac{(2n-\Delta^+)!}{(n-\Delta^+/2)!}
\frac{1}{n!} 4^n
\\ = (-1)^{m_0+\Delta^+/2}
\frac{\Delta^+!}{(\Delta^+/2)!}
\frac{(2n-\Delta^+)!}{(n-\Delta^+/2)!}
\frac{1}{n!}.$$
To conclude observe that $(-1)^{m_0+\Delta^+/2} =
(-1)^{3m_0/2+m_1/2} = (-1)^{-m_0/2+m_1/2}$ to get
$$\bbox[5px,border:2px solid #00A000]{
(-1)^{\Delta^-/2}
\frac{\Delta^+!}{(\Delta^+/2)!}
\frac{(2n-\Delta^+)!}{(n-\Delta^+/2)!}
\frac{1}{n!}.}$$