Suppose that $X$ is distributed as a Binomial$(n,p)$ and $Y$ as a Binomial Negatively$(r,p)$. Prove that
$$F_X(r-1) = 1 - F_Y(n-r)$$
For $X \sim Bin(n,p)$,
$$F_X(x) = P(X \le x) = \sum_{i=0}^{x} \binom{n}{i} p^i (1-p)^{n-i}$$
And for $Y \sim BN(r,p)$,
$$F_Y(y) = P(Y \le y) = \sum_{j=0}^{y} \binom{r+j-1}{j} p^r (1-p)^j$$
Starting from the right side of the equality:
\begin{align*}
1 - F_Y(n-r) &= 1 - P(Y \le n-r) \\
&= 1 - (1 - P(Y > n-r)) \\
&= P(Y > n-r) \\
&= \sum_{j=n-r+1}^{\infty} \binom{r+j-1}{j} p^r (1-p)^j
\end{align*}
Now, let $j = n - r + 1 + k$, so $k$ starts at $k=0$. Thus, let $k = j - (n - r + 1)$, then this new index starts at $0$, and we have:
\begin{align*}
\sum_{j=n-r+1}^{\infty} \binom{r+j-1}{j} p^r (1-p)^j &= \sum_{k=0}^{\infty} \binom{n+k}{k} p^r (1-p)^{n-r+1+k} \\
&= p^r (1-p)^{n-r+1} \sum_{k=0}^{\infty} \binom{n+k}{k} (1-p)^{k} \\
&= p^r (1-p)^{n-r+1} \\
\end{align*}
What would be the next step, I'm stuck with this last identity. Maybe I should use convergence???