Here is a partial answer, where I in the end fail to make it overlap globally, but it seems to me that there should be a way to define it consistently globally.
Also see the link provided by Paul Frost in the comments, which seems interesting.
We let $f:I \to M$ be a loop based at $p$ with image in a manifold $M$, and make the restriction $f|_{\left[\frac{(k-1)}{n},\frac{k}{n}\right]}$. Then I believe $f_k = f\left(\frac{(k-1)}{n}(1-t)+\frac{tk}{n}\right)$ is a reparametrization of $f|_{\left[\frac{(k-1)}{n},\frac{k}{n}\right]}$; to see this, note that $\gamma(t) = \frac{(k-1)}{n}(1-t)+\frac{tk}{n}$ has derivative $\frac{1}{n}$ and $I$ is convex, so $f_k:I \to M$ will take all values at $f$ inside $\left[\frac{(k-1)}{n},\frac{k}{n}\right]$ (we are using that $\gamma$ has domain $I$ which is a closed interval, so by the intermediate value theorem, takes on every value between $\left[\frac{(k-1)}{n},\frac{k}{n}\right]$ ).
We can now define a path-homotopy $f_k \sim f$ as follows:
\begin{align*}
H_k(s,t) &= f\left(st+\left(\left(\frac{k-1}{n}\right)(1-s)+\frac{sk}{n}\right)(1-t)\right),\qquad(1)
\end{align*}
for $k = 1,\ldots,n$. One checks that this is indeed a path-homotopy, i.e. that
\begin{align*}
H(s,0) &= f_k(s)\\
H(s,1) &= f(s)\\
H(0,t) &= p\\
H(1,t) &= p.
\end{align*}
This seem to work (please correct me otherwise).
We let $f:I \to M$ be a loop based at $p$ with image in a manifold $M$, and make the restriction $f|_{\left[\frac{(k-1)}{n},\frac{k}{n}\right]}$. Then I believe $f_k = f\left(\frac{(k-1)}{n}(1-t)+\frac{tk}{n}\right)$ is a reparametrization of $f|_{\left[\frac{(k-1)}{n},\frac{k}{n}\right]}$; to see this, note that $\gamma(t) = \frac{(k-1)}{n}(1-t)+\frac{tk}{n}$ has derivative $\frac{1}{n}$ and $I$ is convex, so $f_k:I \to M$ will take all values at $f$ inside $\left[\frac{(k-1)}{n},\frac{k}{n}\right]$ (we are using that $\gamma$ has domain $I$ which is a closed interval, so by the intermediate value theorem, takes on every value between $\left[\frac{(k-1)}{n},\frac{k}{n}\right]$ ).
We then define $H(s,t)$ as follows:
\begin{align*}
(2) \qquad H(s,0) &= \begin{cases} H_1(ns,0), 0 \leqslant s \leqslant \frac{1}{n}\\
H_2(ns-1,0), \frac{1}{n} \leqslant s \leqslant \frac{2}{n}\\
\vdots \\
H_n(ns-(n-1),0), \frac{n-1}{n} \leqslant s \leqslant \frac{n}{n} = 1
\end{cases}
\end{align*}
We then see that $H(s,0) = f_1 \ast \ldots \ast f_n$.
Furthermore, we define
\begin{align}
\begin{aligned}
(3) \qquad H(s,1) &= \begin{cases} H_1(s,1), 0 \leqslant s \leqslant \frac{1}{n}\\
H_2(s,1), \frac{1}{n} \leqslant s \leqslant \frac{2}{n}\\
\vdots \\
H_n(s,1), \frac{n-1}{n} \leqslant s \leqslant \frac{n}{n} = 1
\end{cases}
\end{aligned}
\end{align}
One then finds that $H(s,1) = f(s)$. It remains to see how to define $H(s,t)$ for $0 < t < 1$. $(2)$, $(3)$ gives us a hint.
From $(2)$, $(3)$ one would perhaps naively define it globally as
\begin{align*}
H(s,t) &= \begin{cases} H_1(st+(1-t)(ns),t), 0 \leqslant s \leqslant \frac{1}{n}, 0 \leqslant t \leqslant 1\\
H_2(st+(1-t)(ns-1),t), \frac{1}{n} \leqslant s \leqslant \frac{2}{n},0 \leqslant t \leqslant 1\\
\vdots \\
H_n(st+(1-t)(ns-(n-1)),t), \frac{n-1}{n} \leqslant s \leqslant \frac{n}{n} = 1, 0 \leqslant t \leqslant 1
\end{cases}
\end{align*}
but (!) this does not work, because $H(s,t)$ as defined does not seamlessly overlap on $s = \frac{k}{n}$ for $H_{k},H_{k+1}$.