Let $x_1,x_2,\ldots,x_{2n-1}\in\mathbb{R}\setminus\mathbb{Q}$. Claim: there exists a nonempty subset $S\subset\{1,2,\ldots,2n-1\}$ such that $\lvert S \rvert \geq n$ and for any $S'\subset S$ with $S'\neq\varnothing$, we have $\sum_{i\in S'}x_i\in\mathbb{R}\setminus\mathbb{Q}$.
This is an exercise from a linear algebra (not number theory).