Once I encountered the integral
$$\int_0^{\frac{\pi}{2}} \sin (2 x) \ln ^2\left(1+2 \tan ^2 x\right) d x ,$$
my first substitution is $c=\cos^2 x$
$\displaystyle \begin{aligned} \int_0^{\frac{\pi}{2}} \sin (2 x) \ln ^2\left(1+2 \tan ^2 x\right) d x = & -\int_0^{\frac{\pi}{2}} \ln ^2\left(\frac{\cos ^2 x+2 \sin ^2 x}{\cos ^2 x}\right) d\left(\cos ^2 x\right) \\ = & \int_0^1 \ln ^2\left(\frac{2-c}{c}\right) d c\end{aligned}\tag*{} $
Then I put $y=\frac{2-c}{c}$ and get
$\displaystyle \begin{aligned} \int_0^{\frac{\pi}{2}} \sin (2 x) \ln ^2\left(1+2 \tan ^2 x\right) d x & =2 \int_1^{\infty} \frac{\ln ^2 y}{(1+y)^2} d y \\ & =-2 \int_1^{\infty} \ln ^2 y d\left(\frac{1}{1+y}\right) \\ & =4 \int_1^{\infty} \frac{\ln y}{y(1+y)} d y \quad \textrm{ (Via integration by parts)} \\ & =4 \int_0^1 \frac{-\ln y}{\frac{1}{y}\left(1+\frac{1}{y}\right)} \frac{d y}{y^2}, \text { where } y \mapsto \frac{1}{y} \\ & =-4 \int_0^1 \frac{\ln y}{y+1} d y \\ & =-4\left(-\frac{\pi^2}{12}\right) \quad \textrm{ (See footnote for details)} \\ & =\frac{\pi^2}{3}\end{aligned}\tag*{} $
Then I investigate the integral in general
$$I_n=\int_0^{\frac{\pi}{2}} \sin (2 x) \ln ^n\left(1+2 \tan ^2 x\right) d x ,$$
Using the same substitution $y=\frac{2-\cos^2x}{\cos^2 x}$, we get
$$ \begin{aligned} I_n & =2 n \int_1^{\infty} \frac{\ln ^{n-1} y}{y(1+y)} d y \\ & =2 n \int_0^1 \frac{\ln ^{n-1}\left(\frac{1}{y}\right)}{\frac{1}{y}\left(1+\frac{1}{y}\right)} \frac{d y}{d y^2} \\ & =2 n(-1)^{n-1} \int_0^1 \frac{\ln ^{n-1} y}{1+y} d y\\&=2^{1-n} n\left(2^n-2\right) \zeta(n) \Gamma(n) \end{aligned} $$
where the last answer using the result in my post.
My question:
Is there any other method to evaluate $\int_0^{\frac{\pi}{2}} \sin (2 x) \ln ^n\left(1+2 \tan ^2 x\right) d x ?$
Footnote:
$\displaystyle \begin{aligned} \int_0^1 \frac{\ln y}{y+1} d y & =\sum_{n=0}^{\infty}(-1)^n \int_0^1 y^n \ln y d y=\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \\ & =-\sum_{n=1}^{\infty} \frac{1}{n^2}+2 \sum_{n=1}^{\infty} \frac{1}{(2 n)^2}=-\frac{1}{2} \sum_{n=1}^n \frac{1}{n^2}\\&=-\frac{\pi^2}{12}\end{aligned}\tag*{} $