5

The substitution $x\mapsto \frac{\pi}{2}-x$ is always helpful for evaluating integral consisting of polynomials and trigonometric function. $$I_0=\int_0^{\frac{\pi}{2}}(\sqrt{\tan x}-\sqrt{\cot x}) d x = \int_0^{\frac{\pi}{2}}(\sqrt{\cot x}-\sqrt{\tan x}) d x \Rightarrow I_0 =0$$ However, when I multiply the integrand by $x$ and use the same substitution, I fails to evaluate $$I_1= \int_0^{\frac{\pi}{2}}x(\sqrt{\tan x}-\sqrt{\cot x}) d x$$ since $$ \begin{aligned} I_1 & =\int_0^{\frac{\pi}{2}}\left(\frac{\pi}{2}-x\right)(\sqrt{\cot x}-\sqrt{\tan x}) d x \\ & =\frac{\pi}{2} \int_0^{\frac{\pi}{2}}(\sqrt{\cot x}-\sqrt{\tan x}) d x+I_1\end{aligned} $$ in which $I_1$ on both sides cancel each other.

Then I started to investigate $I_1$ by letting $t=\tan x$ and get $$ \begin{aligned} I_1& =\int_0^{\infty} \tan ^{-1} t\left(\sqrt{t}-\frac{1}{\sqrt{t}}\right) \frac{d t}{1+t^2} \\ & =\int_0^{\infty} \frac{t-1}{\sqrt{t}\left(1+t^2\right)} \tan ^{-1} t d t \\ & =2 \int_0^{\infty} \frac{t^2-1}{1+t^4} \tan ^{-1} (t^2) d t \text {, where } t \mapsto t^2\\&=2J(1) \end{aligned} $$ where $J(a)= \int_0^{\infty} \frac{t^2-1}{1+t^4} \tan ^{-1} (at^2) d t .$

Differentiating $J(a)$ w.r.t. $a$ yields $$ \begin{aligned} J^{\prime}(a)&=\int_0^{\infty} \frac{t^2\left(t^2-1\right)}{\left(1+t^4\right)\left(1+a^2 t^4\right)} d t \\ & = \frac{1}{a^2-1}\left[\int_0^{\infty} \frac{t^2+1}{1+t^4} d t-\int_0^{\infty} \frac{1+a^2 t^2}{1+a^2 t^4} d t\right]\\ & =\frac{1}{a^2-1}\left[\frac{\pi}{\sqrt{2}}-\frac{\pi(a+1)}{2\sqrt{2a}}\right] \\ & =\frac{\pi}{\sqrt{2}\left(a^2-1\right)}\left(1-\frac{a+1}{2 \sqrt{a}}\right) \end{aligned} $$ Integrating back yields $$ \begin{aligned} J(1) & =\frac{\pi}{\sqrt{2}} \int_0^1 \frac{1}{a^2-1}\left(1-\frac{a+1}{2 \sqrt{a}}\right) d a \\ & =\frac{\pi\ln 2}{2\sqrt 2} \end{aligned} $$ Hence $$\boxed{I_1=\frac{\pi\ln 2}{2} }$$ Putting $x\mapsto \frac{\pi}{2}-x$ again to $I_2$ gives $$ \begin{aligned} I_2 & =\int_0^{\frac{\pi}{2}}\left(\frac{\pi}{2}-x\right)^2(\sqrt{\cot x}-\sqrt{\tan x}) d x \\ &= \frac{\pi^2}{4} \int_0^{\frac{\pi}{2}}(\sqrt{\cot x}-\sqrt{\tan x}) d x-\pi \int_0^{\frac{\pi}{2}} x(\sqrt{\cot x} -\sqrt{\tan x}) -I_2 \\ \end{aligned} $$ Rearranging gives $$\boxed{I_2 =\frac{\pi}{2} \int_0^{\frac{\pi}{2}} x(\sqrt{\tan x}-\sqrt{\cot x}) d x =\frac{\pi}{2} \cdot \frac{\pi \ln 2}{\sqrt{2}}=\frac{\pi^2 \ln 2}{2 \sqrt{2}}}$$

To continue, I am stuck by the cancelling of $I_3$ in the equation $$ \begin{aligned} I_3 & =\int_0^{\frac{\pi}{2}}\left(\frac{\pi}{2}-x\right)^3(\sqrt{\cot x}-\sqrt{\tan x}) d x \\ & =\frac{3 \pi^2}{4} I_1-\frac{3 \pi}{2} I_2+I_3 \end{aligned} $$ which reveals that it is harder to find $I_{2n-1}$ for any $n\in \mathbb N$.

My question:

How to evaluate $\int_0^{\frac{\pi}{2}}x^3(\sqrt{\tan x}-\sqrt{\cot x}) d x$?

Your comments and solutions are highly appreciated.

Lai
  • 31,615
  • Are you sure it converges for every $n$ – Ricci Ten Oct 16 '24 at 01:58
  • I guess so. Thank you for your reminder. – Lai Oct 16 '24 at 02:17
  • 1
    Substituting $x\to x+\frac\pi4$ instead, exploiting symmetry, and then $x\to\arctan x$ produces two Ahmed-like integrals,$$I_3=\frac{3\pi^2}4\int_0^1\frac{x\arctan x}{\sqrt{1-x^2}(1+x^2)},dx+4\int_0^1\frac{x\arctan^3x}{\sqrt{1-x^2}(1+x^2)},dx$$The first integral I'm almost certain has been posted before... maybe not, Approach0 isn't much help... or should at least be amenable to methods used for similar integrals. That cubed arctan doesn't seem so friendly – user170231 Oct 16 '24 at 04:30
  • Another similar problem – user170231 Oct 16 '24 at 04:34
  • Thank you very much for your suggestion and reference. – Lai Oct 16 '24 at 04:55
  • Using $\arctan(x+1)-\arctan(x-1)=\arctan(2x^{-2})$, I found $$I_3=\int_0^{\pi/2} x^3\left(\sqrt{\tan(x)}-\sqrt{\cot(x)}\right)$$$$=-4\sqrt2\int_{-\infty}^\infty\frac{x(x^2-7)}{(x^2+1)(x^2-4x+5)(x^2+4x+5)}\arctan^3(x)dx$$$$+6\sqrt2\int_{-\infty}^\infty\frac{2-x^2}{4+x^4}\arctan(x+1)\arctan^2(x-1)dx$$

    This does not seem like much help. Perhaps the $\arctan^3(x)$ integral will be amenable to methods within complex analysis?

    – polychroma Jan 18 '25 at 14:49

0 Answers0