I am trying to figure out how the series expansion of $\lim_{n\to\infty}\frac{n}{\sqrt[n]{n!}}\ \text{equals}\ e$?
-
Proofreading is your friend. At least reconcile the title and question. – A rural reader Oct 15 '24 at 01:39
-
4This question is similar to: $\lim\limits_{n\to\infty} \frac {n}{\sqrt[n]{n!}} $ and $\lim\limits_{n\to\infty} C_{2 n}^n$. If you believe it’s different, please [edit] the question, make it clear how it’s different and/or how the answers on that question are not helpful for your problem. – Riemann Oct 15 '24 at 01:41
-
1Is $\frac{n}{\sqrt[n]{n!} }$ the general term of a series or of a sequence? – MasB Oct 15 '24 at 02:03
1 Answers
$e^x=1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!}+\cdots$
From this expansion, by setting x=n,
$e^n=1+\frac{n}{1!}+\frac{n^2}{2!}+\cdots+\frac{n^n}{n!}+\cdots$
It is obvious that
$e^n \geq \frac{n^n}{n!}$
Also, we can take log
$\ln{\frac{n^n}{n!}}=n \ln n - (\ln{1}+\ln{2}+\cdots+\ln{n}) =n \ln n-\sum_{k=1}^{n} \ln k$
We can find the inequality using integration of $\ln x$
$\int_{1}^{n + 1}\ln x \; dx= [x \ln x - x]_{1}^{n+1} = (n + 1) \ln (n + 1) - n \geq \sum_{k=1}^{n} \ln k$
which leads to
$\ln{\frac{n^n}{n!}} \geq n \ln n - (n+1) \ln (n+1) + n$
and
$\frac{n^n}{n!} \geq \frac{n e^{2n}}{(n+1)e^{n+1}} = \frac{n e^{n-1}}{(n+1)}$
Therefore,
$e^n \geq \frac{n^n}{n!} \geq \frac{n e^{n-1}}{(n+1)}$
Taking nth root
$e \geq \frac{n}{\sqrt[\leftroot{-2}\uproot{2}n]{n!}} \geq e \sqrt[\leftroot{-2}\uproot{2}n]{\frac{n}{e(n+1)}}$
Taking limit
$\lim_{n \to \infty} e \geq \lim_{n \to \infty} \frac{n}{\sqrt[\leftroot{-2}\uproot{2}n]{n!}} \geq lim_{n \to \infty} \; e \sqrt[\leftroot{-2}\uproot{2}n]{\frac{n}{e(n+1)}}$
Then
$e \geq \lim_{n \to \infty} \frac{n}{\sqrt[\leftroot{-2}\uproot{2}n]{n!}} \geq e$
$\lim_{n \to \infty} \frac{n}{\sqrt[\leftroot{-2}\uproot{2}n]{n!}}=e$
- 29