We have to differentiate between closed-form solutions and analytic solutions.
a) Let $P(x)$ denote a polynomial in $x$.
$$xe^{P(x)}=c$$
It seems the equation is solvable by Lambert W only if $P(x)=a_0+a_1x^b\ $ ($a_0,a_1,b$ constant).
$$xe^{a_0+a_1x^b}=c\tag{1}$$
The solution for real $a_0,a_1,b,x$ is:
$$x=e^\frac{-a_0b+b\ln(c)-W_k\left(a_1be^{-a_0b+b\ln(c)}\right)}{b}\ \ (k\in\{-1,0\})\tag{2}$$
If we already have a solution, we can apply the operations performed on the right-hand side of equation (1) $(c)$ in reverse order to retrace the solution way:
Solving equation (2) for the $W$-term yields:
$$W_k\left(a_1be^{-a_0b+b\ln(c)}\right)=-a_0b+b\ln(c)-b\ln(x)$$
$$-a_0b+b\ln(c)-b\ln(x)=W_k\left(a_1be^{-a_0b+b\ln(c)}\right)\tag{3}$$
We know: $xe^x=c\implies x=W(c)$ and $x=W(c)\implies xe^x$.
Equation (3) implies therefore:
$$(-a_0b+b\ln(c)-b\ln(x))e^{-a_0b+b\ln(c)-b\ln(x)}=a_1be^{-a_0b+b\ln(c)}\tag{4}$$
See the operations at $c$ on the right-hand side of equation (4).
$$xe^{a_0+a_1x^b}=c$$
$$\ln(xe^{a_0+a_1x^b})=\ln(c)$$
$$\ln(x)+a_0+a_1x^b=\ln(c)$$
$$b\ln(x)+a_0b+a_1bx^b=b\ln(c)$$
$$a_1bx^b+b\ln(x)=-a_0b+b\ln(c)$$
$$x^be^{a_1bx^b}=e^{-a_0b+b\ln(c)}$$
$$a_1bx^be^{a_1bx^b}=a_1be^{-a_0b+b\ln(c)}$$
$$a_1bx^b=W_k\left(a_1be^{-a_0b+b\ln(c)}\right)$$
$$x^b=\frac{W_k\left(a_1be^{-a_0b+b\ln(c)}\right)}{a_1b}$$
$$e^{b\ln(x)}=\frac{W_k\left(a_1be^{-a_0b+b\ln(c)}\right)}{a_1b}$$
$$\ln(e^{b\ln(x)})=\ln\left(\frac{W_k\left(a_1be^{-a_0b+b\ln(c)}\right)}{a_1b}\right)$$
$\ln(W(y))=\ln(y)-W(y)$:
$$b\ln(x)=-a_0b+b\ln(c)-W_k\left(a_1be^{-a_0b+b\ln(c)}\right)$$
$$\ln(x)=\frac{-a_0b+b\ln(c)-W_k\left(a_1be^{-a_0b+b\ln(c)}\right)}{b}$$
$$x=e^{\frac{-a_0b+b\ln(c)-W_k\left(a_1be^{-a_0b+b\ln(c)}\right)}{b}}$$
$\ $
b) For applying Lambert W, we need the equation in a form
$$f(g(x)e^{g(x)})=c,$$
where $f$ and $g$ are functions of one variable. But with the elementary operations (are elementary functions), it's only possible for relatively simple functions of $x$ in the coefficient and in the exponent to make the coefficient and the exponent equal.