The problem:
Evaluate $\displaystyle\lim_{t \to 0} \frac{3 \sin t- \sin 3t}{3 \tan t-\tan3t}$.
The solution:
$-\dfrac{1}{2}$
What I have tried:
$\displaystyle\lim_{t \to 0} \frac{3 \sin t- \sin 3t}{3 \tan t-\tan3t} \left[\frac{0}{0}\right]=\lim_{t \to 0}\frac{3\cos t-3\cos 3t}{3(1+\tan^2t)-3(1+\tan^2 3t)}=\\ \displaystyle\lim_{t \to 0}\frac{3(\cos t-\cos 3t)}{3(1+\tan^2 t - 1 - \tan^2 3t)}=\lim_{t \to 0}\frac{\cos t - \cos 3t}{\tan^2 t - \tan^2 3t}\left[\frac{0}{0}\right]=\\ \displaystyle\lim_{t \to 0}\frac{-\sin t + \sin t \cdot 3}{2\tan t(1+\tan^2 t)-2\tan 3t \cdot 3(1+\tan^2 3t)}=\\ \displaystyle\lim_{t \to 0}\frac{2\sin t}{2\tan t + 2\tan^3 t - 6\tan 3t - 6\tan^3 3t}=\lim_{t \to 0}\frac{\sin t}{\tan t + \tan^3 t - 3\tan 3t - 3\tan^3 3t}\left[\frac{0}{0}\right]$
My question:
I keep getting the indeterminate form "$\dfrac{0}{0}$". How do I get the right solution, i.e. $-\dfrac{1}{2}$?