Find a sum of $$\sum_{n=1}^{\infty} \tan^{-1} \left(\frac{2}{n^2 + n + 1}\right)$$
Is it possible? I tried to make telescopic formula for such $\tan^{-1}$, but all my trials had no success.
P.S. I've tried to do it in the same way as for $\sum_{n=1}^{\infty} \tan^{-1} \left(\frac{1}{n^2 + n + 1}\right)$ and $\sum_{n=1}^{\infty} \tan^{-1} \left(\frac{2}{n^2 + n + 4}\right)$, so I tried to represent the fraction $\frac{2}{n^2 + n + 1}$ as $\frac{a - b}{1 + ab}$:
$$ \begin{cases} a - b = 2 \\ 1 + ab = 1 + n + n^2 \end{cases} $$ but this system has solutions: $$ \begin{cases} a = 1 - \sqrt{n^2 + n + 1} \\ b = - 1 - \sqrt{n^2 + n + 1} \end{cases}$$ $$ \begin{cases} a = \sqrt{n^2 + n + 1} + 1 \\ b = \sqrt{n^2 + n + 1} - 1 \end{cases}$$
and
$$\tan^{-1} \left(\frac{2}{n^2 + n + 1}\right) = \tan^{-1} \left(\sqrt{n^2 + n + 1} + 1\right) - \tan^{-1} \left(\sqrt{n^2 + n + 1} - 1\right)$$
This difference does not allow us to make sum $\sum_{n=1}^{\infty} \tan^{-1} \left(\frac{2}{n^2 + n + 1}\right)$ to be a telescopic sum as it was in cases $\sum_{n=1}^{\infty} \tan^{-1} \left(\frac{1}{n^2 + n + 1}\right)$ and $\sum_{n=1}^{\infty} \tan^{-1} \left(\frac{2}{n^2 + n + 4}\right)$
Would here be some other ways to find accurate sum of $\sum_{n=1}^{\infty} \tan^{-1} \left(\frac{2}{n^2 + n + 1}\right)$?