Background
Definition: If the ideals $\mathfrak{a}=\langle m\rangle$ and $\mathfrak{b}=\langle n\rangle$ are both principal, i.e., generated by a single element, then their intersection $\mathfrak{a}\cap\mathfrak{b}=\langle \text{lcm}(m,n)\rangle$. For monomial ideals we get
$$\langle m_1,\ldots,m_r\rangle\cap \langle n_1,\ldots,n_s\rangle=\sum_{i=1}^{r}\sum_{j=1}^{s}\langle m\rangle\cap\langle n\rangle=\sum_{i=1}^{r}\sum_{j=1}^{s}\langle \text{lcm}(m_i,n_j) \rangle$$
Example (from the following youtube video at time index: 13:19 to 15:37:
$(x^2,y), (x,z)\subset \Bbb{C}[x,y,z]$
Intersection:
$(x^2,y)\cap (x,z)=\{p: p\in (x^2,y),p\in (x,z)\}$
$x^2\mid p\text{ or }y\mid p$
$\Rightarrow\; x\mid p \;\text{ either } xy\mid p \text{ or } yz\mid p$
$=(x^2,xy,yz)$
Question
Should the example in the above screenshot from the cited youtube video be: $(x^2,y)\cap (x,z)=(x^2, x^2z, yx,yz)$ instead of $(x^2,xy,yz)$?
Thank you in advance
![]](../../images/837613bde70e7c90001819074f871383.webp)
Isn't $z\mid p$ missing in the line $x^2\mid p\text{ or }y\mid p$?
According to his reasonings, if $c\mid (a,b)$ then $a\mid c$ or $b\mid p$, hence $x^2\mid p\text{ or }y\mid p \text{ or } z\mid p$. Then the rest of the argument proceed as it is.
– Seth Oct 06 '24 at 17:27