The cone is the submanifold of spherical coordinates with constant angle $\theta$: $$x= r \cos \phi\ \sin \theta, \ y = r \sin \phi \ \sin \theta,\ z=r \cos \theta.$$ It follows that its metrics written as the quadratic form
$$ds^2 = dr^2 + r^2 \sin^2 \theta\ d\phi^2$$
The Lagrangian formalism yields the Euler geodetic equations in terms of the arc parameter $t$
$$\frac{d}{dt} \partial_{\dot r}\ \left(\frac{1}{2} \dot r^2 \right) -\partial_{ r}\left(\frac{1}{2} \left( r^2 \sin^2 \theta \ \dot \phi^2\right)\right)=0 $$ and
$$\frac{d}{dt} \partial_{\dot \phi}\ (\frac{1}{2} r^2 \sin^2 \theta \ \dot \phi ^2) =0$$
or $$\ddot r = r \ \sin^2 \theta \ \dot \phi^2$$
$$\ddot \phi = -r \ \sin ^2\theta \ \dot r \ \dot \phi$$
yielding the only two nonvanishing Christoffel symbols in
$${\ddot x}^k = {\Gamma^k}_{lm}\ {\dot x}^l \ {\dot x}^m$$
$${\Gamma^r}_{\phi\phi} = r \sin^2\theta, \quad {\Gamma^\phi}_{r \phi} = {\Gamma^\phi}_{\phi r}- \frac{1}{2} \ r\ \sin^2\theta$$
With these connection forms the Riemann tensor evaluates to zero, the cone is flat and evolvable on a euclidean plane as part of disk (the or lower upper half of the double cone).