Question:
I am trying to prove that the condition number of a function $ f(x) = Ax $, where A $\in R^{m\times n}$ and $x \in R^{n\times 1}$ , is given by:
$$ \text{cond}(f) = \|A^{-1}\|\|A\| $$
The given definition of the condition number of a function ( f ) is:
$$ \limsup_{\|\Delta x\| \to 0} \frac{\frac{\|\Delta y\|}{\|y\|}}{\frac{\|\Delta x\|}{\|x\|}} $$
Starting from this definition, I have:
$$ \text{cond}(f) = \limsup_{\|\Delta x\| \to 0} \frac{\frac{\|A\Delta x\|}{\|Ax\|}}{\frac{\|\Delta x\|}{\|x\|}} $$
Then, I proceed with the following simplifications:
$$ \limsup_{\|\Delta x\| \to 0} \frac{\|A\|}{\|A\|} \frac{\|\Delta x\|}{\|x\|}\frac{\|x\|}{\|\Delta x\|} $$
Next, eliminating ( x ), I arrive at:
$$ \limsup_{\|\Delta x\| \to 0} \frac{\|A\|}{\|A\|} $$
Finally, I get:
$$ \text{cond}(f) = \|A^{-1}\|\|A\| $$ However, I feel like something is wrong, but I’m not sure what the exact issue is. Could anyone help me identify where my reasoning or steps might be incorrect?