Let $V$ be a vector space and $\langle\cdot,\cdot\rangle:V\times V\rightarrow\mathbb{C}$ be a hermitian form (conjugate-linear on the first argument and linear on the second), such that $\langle v,v\rangle\in\Bbb R_{\ge0}$ for all $v\in V$.
Given two vectors $v\in V$ and $w\in V$, we shall prove that $|\langle v,w\rangle|\le\|v\|\|w\|$ where $\|\cdot\| = \sqrt{\langle\cdot,\cdot\rangle}$.
We can assume wlog that $$\lambda:=\langle v,w\rangle\in\Bbb R$$ (if $\lambda\notin\Bbb R$, simply replace $w$ by $\frac{|\lambda|}\lambda w$, which won't change the two members of the inequality we want to prove).
We shall use that
$$\forall t\in\Bbb R\quad P(t):=\|v+tw\|^2\ge0$$
- If $\|w\|=0$, this implies $2t\lambda+\|v\|^2\ge0$, so $$\forall s>0\quad|\lambda|\le\frac{\|v\|^2}{2s}$$ hence $\lambda=0$ and we are done.
- If $\|w\|\ne0$,
$$0\le P(-\lambda/\|w\|^2)=\|v\|^2-\lambda^2/\|w\|^2$$ hence $\lambda^2\le\|v\|^2\|w\|^2$ and again, we are done.
For the case of equality, you need to assume positive-definiteness. Essentially: if $\|w\|\ne0$ and $|\lambda|=\|v\|\|w\|$ then $P(-\lambda/\|w\|^2)=0$ implies $v-\frac\lambda{\|w\|^2}w=0$.