But what can we say about invertibility of $M_1+M_2$
OP has already shown $\text{rank}\big(M_1\big)\in \big\{0,1,2\big\}$. If $\text{rank}\big(M_1\big)\leq 1$ then
$\text{rank}\Big(\big(M_1+M_2\big)^2\Big)=\text{rank}\Big(M_1M_2+M_2M_1\big)\leq 1+1\lt 3$
$\implies \det\big(M_1+M_2\big)^2=0=\det\big(M_1+M_2\big)$. So it remains to consider the case where $\text{rank}\big(M_1\big)=2\implies \text{rank}\big(M_1^2\big)\in \big\{1,2\big\}$ (e.g. by Sylvester's Rank Inequality).
By rank-nullity, one of $\ker M_1^2 \big(=\ker M_2^2\big)$ or $\text{image } M_1^2 \big(= \text{image } M_2^2\big)$ is 1 dimensional and label that $W$. Then $M_1 W\subseteq W\text{ and }M_2 W\subseteq W\implies$ for unit length $\mathbf w\in W$ that $M_1 \mathbf w = \lambda_1 \mathbf w$ and $M_2 \mathbf w = \lambda_2 \mathbf w$
$\implies 0\leq \lambda_1^2 = \mathbf w^T (M_1^2 \mathbf w) = -\mathbf w^T (M_2^2 \mathbf w) = -\lambda_2^2 \leq 0$, i.e. the eigenvalues are zero.
Thus $\big(M_1+M_2\big)\mathbf w =M_1\mathbf w + M_2\mathbf w = \mathbf 0+ \mathbf 0$; conclude $\big(M_1+M_2\big)$ is not invertible.
remark:
The above argument generalizes to $M_1, M_2 \in \mathcal M_{2k+1}\big(\mathbb R\big)$. With the trivial Base Case at $k=0$, proceed by strong induction. By OP's argument $\det\big(M_1\big)=0=\det\big(M_2\big)$. The case of $\text{rank}\big(M_1\big) \leq k \implies \det\big(M_1 +M_2\big) =0$ by the first paragraph's argument (i.e. sub-multiplicativity and sub-additivity of rank). It remains to consider $\text{rank}\big(M_1\big) \geq k+1$; rank-nullity tells us one of $\ker M_1^2$ and $\text{image } M_1^2$ is even dimensional and the other odd dimensional. The even dimensional one cannot be zero dimensional (per Sylvester's Rank Inequality and the fact that $\dim \ker M_1 \gt 0$), so label the odd dimensional subspace $W$, noticing $\dim W\lt 2k+1$, and look at the restrictions $M^{(1)}_{\vert W}$ and $M^{(2)}_{\vert W}$ where $\det\Big(M^{(1)}_{\vert W}+M^{(2)}_{\vert W}\Big)=0$ per strong induction hypothesis, which gives the result.