I found this question : For $x>1$ find $$\lim\limits_{n \to \infty} n\left(n^{x-1 }\left(\zeta(x)-\sum\limits_{k=1}^n \frac{1}{k^x}\right)-\frac{1}{x-1}\right)$$
Using Stolz-Cesàro theorem:
Stolz-Cesàro theorem case $\frac{0}{0}$:- If $b_n$ is a strictly decreasing sequence and $\lim \limits_{n \to \infty} b_n = \lim \limits_{n \to \infty} a_n = 0$, and if $\lim \limits_{n \to \infty} \frac{a_{n+1}-a_n}{b_{n+1}- b_n}= l \in \overline{\mathbb{R}}$, then $\lim \limits_{n \to \infty} \frac{a_n }{b_n}=l$.
It is easy to prove that: $$\lim\limits_{n \to \infty} n^{x-1 } (\zeta(x)-\sum\limits_{k=1}^n \frac{1}{k^x})=\frac{1}{x-1}$$
However it is not easy to prove that $n^{x-1 } \left(\zeta(x)-\sum\limits_{k=1}^n \frac{1}{k^x}\right)$ is a monotone sequence and even if we proved that applying Stolz-Cesàro theorem would be very difficult.
I also want to ask for a generalization: Find a closed form for $a_r(x)$ such that:
$$n^{x-1 } \left(\zeta(x)-\sum\limits_{k=1}^n \frac{1}{k^x}\right)= \frac{1}{x-1} +\sum\limits_{r\ge 1} \frac{a_r(x)}{n^r}$$