Consider $$\lim\limits_{x\to 0} \frac{\sin(x)-x+\frac{x^3}{6}}{x^5}$$
I want to evaluate this limit in three different ways.
First method - Hopital's Rule
The limit leads to indetermination $0/0$.
Consider $$\lim_{x\to 0}\frac{\left[\sin(x)-x+\frac{x^3}{6}\right]'}{\left[x^5\right]'}=\lim_{x\to 0}\frac{\cos(x)-1+\frac{x^2}{2}}{5x^4}=\frac{0}{0}$$
that it's still an indetermination. I apply Hopital's rule again:
$$\lim_{x\to 0}\frac{\left[\cos(x)-1+\frac{x^2}{2}\right]'}{\left[5x^4\right]'}=\lim_{x\to 0}\frac{-\sin(x)+x}{20x^3}=\frac{0}{0}$$
that it's still an indetermination. I apply Hopital's rule again:
$$\lim_{x\to 0}\frac{\left[-\sin(x)+x\right]'}{\left[20x^3\right]'}=\lim_{x\to 0}\frac{-\cos(x)+1}{60x^2}=\frac{1}{60}\lim_{x\to 0}\frac{1-\cos(x)}{x^2}=\frac{1}{120}$$
Therefore, the initial limit is:
$$\lim\limits_{x\to 0} \frac{\sin(x)-x+\frac{x^3}{6}}{x^5}=\frac{1}{120}$$
Second method - Taylor's expansion
Using that $\sin(x)=x-\frac{x^3}{6}+\frac{x^5}{120}+o(x^6)$ for $x\to 0$, I can rewrite the initial limit as it follows:
$$\lim_{x\to 0}\frac{\sin(x)-x+\frac{x^3}{6}}{x^5}=\lim_{x\to 0}\frac{x-\frac{x^3}{6}+\frac{x^5}{120}-x+\frac{x^3}{6}}{x^5}=\lim_{x\to 0}\frac{\frac{x^5}{120}}{x^5}=\frac{1}{120}$$
Any suggestions for a third method to solve this limit?